SEGNN4SLP: Structure Enhanced Graph Neural Networks for Service Link Prediction
, y
31 dic 2024
Acerca de este artículo
Publicado en línea: 31 dic 2024
Páginas: 9 - 18
DOI: https://doi.org/10.2478/ijanmc-2024-0032
Palabras clave
© 2024 Yuxi Lin et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

j_jhp-2024-0019_utab_002
1 /* extracts enclosing subgraph */ | 2 |
3 |
4 |
6 /* GNN message passing */for k=1,2…K do: for u ∈ |
|
7 hG ← |
8 |
9 |
j_jhp-2024-0019_utab_001
1 /*extracts the routes*/ | 2 pi,j (G;i,j) |
3 /* generate node structural features */ | 4 cu ← {pi.j,GS}, ∀u ∈ GS; |
5 |
6 /* encode with a GCN layer and a MLP */ |
7 for u ∈ GS do | 8 |
9 end for | 10 Zu → MLP(zu), ∀u ∈ Gs; |
Comparison of different methods in nDCG@k_
K=5 | K=10 | K=15 | K=20 | K=25 | |
---|---|---|---|---|---|
Node2vec | 0.2314 | 0.2786 | 0.3278 | 0.3529 | 0.3604 |
GCN | 0.2811 | 0.3378 | 0.3588 | 0.3687 | 0.3786 |
GraphSAGE | 0.2823 | 0.3468 | 0.3770 | 0.3819 | 0.3793 |
GAT | 0.2811 | 0.3398 | 0.3764 | 0.3987 | 0.3859 |
SEAL | 0.2994 | 0.3410 | 0.3896 | 0.4055 | 0.3986 |
SEGNN4SLP | 0.3516 | 0.3814 | 0.4156 | 0.4258 | 0.4288 |
Results for SEGNN4SLP, SEGNN4SLP-1, SEGNN4SLP-2_
Methods | Recall | nDCG | ||
---|---|---|---|---|
Recall@5 | Recall@25 | nDCG@5 | nDCG@25 | |
SEGNN4SLP-1 | 0.3389 | 0.4844 | 0.3486 | 0.3855 |
SEGNN4SLP-2 | 0.3284 | 0.4964 | 0.3357 | 0.3746 |
SEGNN4SLP | 0.3598 | 0.5287 | 0.3617 | 0.4137 |
Comparison of different methods in Recall@k_
K=5 | K=10 | K=15 | K=20 | K=25 | |
---|---|---|---|---|---|
Node2vec | 0.2185 | 0.2915 | 0.3473 | 0.3761 | 0.4012 |
GCN | 0.2729 | 0.3461 | 0.3684 | 0.4561 | 0.4716 |
GraphSAGE | 0.2816 | 0.3553 | 0.3941 | 0.4611 | 0.4933 |
GAT | 0.2810 | 0.3513 | 0.3902 | 0.4687 | 0.4910 |
SEAL | 0.2984 | 0.3588 | 0.4013 | 0.4701 | 0.4987 |
SEGNN4SLP | 0.3514 | 0.3981 | 0.4586 | 0.4981 | 0.5231 |