This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Strazdas Dominykas, Hintz Jan, AlHamadi Ayoub. Robo-hud: interaction concept for contactless operation of industrial cobotic systems [J]. Applied Sciences, 2021, 11(12):5366-5366.DominykasStrazdasJanHintzAyoubAlHamadi.Robo-hud: interaction concept for contactless operation of industrial cobotic systems [J]. Applied Sciences, 2021, 11(12):5366-5366.Search in Google Scholar
CHARISSIS V, FALAH J, LAGOO R, et al. Employing emerging technologies to develop and evaluate in-vehicle intelligent systems for driver support: infotainment ar hud case study [J]. Applied Sciences, 2021,11(4):1397-1397.CHARISSISVFALAHJLAGOOREmploying emerging technologies to develop and evaluate in-vehicle intelligent systems for driver support: infotainment ar hud case study [J]. Applied Sciences, 2021, 11(4):1397-1397.Search in Google Scholar
Werner, P., Saxen, F., & Al-Hamadi, A. Landmark based head pose estimation benchmark and method. In ICIP, 2017.WernerP.SaxenF.Al-HamadiA.Landmark based head pose estimation benchmark and method. In ICIP, 2017.Search in Google Scholar
Ruiz, N., Chong, E., & Rehg, J. M. Fine-grained head pose estimation without keypoints. In CVPR, 2018.RuizN.ChongE.RehgJ. M.Fine-grained head pose estimation without keypoints. In CVPR2018.Search in Google Scholar
Hsu H W, Wu T Y, Wan S, et al. QuatNet: QuaternionBased Head Pose Estimation with Multiregression Loss [J]. Multimedia, IEEE Transactions on, 2018. DOI:10.1109/TMM.2018.2866770.HsuH WWuT YWanSQuatNet: QuaternionBased Head Pose Estimation with Multiregression Loss [J]. Multimedia, IEEE Transactions on, 2018. DOI:10.1109/TMM.2018.2866770.Open DOISearch in Google Scholar
Huang B, Chen R, Xu W, et al. Improving head pose estimation using two-stage ensembles with top-k regression [J]. Image and Vision Computing, 2019, 93.DOI:10.1016/j.imavis.2019.11.005.HuangBChenRXuWImproving head pose estimation using two-stage ensembles with top-k regression [J]. Image and Vision Computing, 2019, 93. DOI:10.1016/j.imavis.2019.11.005.Open DOISearch in Google Scholar
Zhou Y, Gregson J. WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose [J]. 2020. DOI:10.48550/arXiv.2005.10353.ZhouYGregsonJ.WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose [J]. 2020. DOI:10.48550/arXiv.2005.10353.Open DOISearch in Google Scholar
Yang T Y, Chen Y T, Lin Y Y, et al. FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image [J]. IEEE, 2020. DOI:10.1109/CVPR.2019.00118.YangT YChenY TLinY YFSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image [J]. IEEE, 2020. DOI:10.1109/CVPR.2019.00118.Open DOISearch in Google Scholar
Cao Z, Chu Z, Liu D, et al. A Vector-based Representation to Enhance Head Pose Estimation[C]//Workshop on Applications of Computer Vision. IEEE, 2021. DOI:10.1109/WACV48630.2021.00123.CaoZChuZLiuDA Vector-based Representation to Enhance Head Pose Estimation[C]//Workshop on Applications of Computer Vision. IEEE, 2021. DOI:10.1109/WACV48630.2021.00123.Open DOISearch in Google Scholar
Zhang H, Wang M, Liu Y, et al. FDN: Feature Decoupling Network for Head Pose Estimation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12789-12796. DOI:10.1609/aaai.v34i07.6974.ZhangHWangMLiuYFDN: Feature Decoupling Network for Head Pose Estimation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12789-12796. DOI:10.1609/aaai.v34i07.6974.Open DOISearch in Google Scholar
Dhingra N. LwPosr: Lightweight Efficient FineGrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.03544.DhingraN.LwPosr: Lightweight Efficient FineGrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.03544.Open DOISearch in Google Scholar
Zhou Y, Barnes C, Lu J, et al. On the Continuity of Rotation Representations in Neural Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. DOI:10.1109/CVPR.2019.00589.ZhouYBarnesCLuJOn the Continuity of Rotation Representations in Neural Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. DOI:10.1109/CVPR.2019.00589.Open DOISearch in Google Scholar
Geist A R, Frey J, Zobro M, et al. Learning with 3D rotations, a hitchhiker’s guide to SO (3) [J]. arxiv preprint arxiv:2404.11735, 2024.GeistA RFreyJZobroMLearning with 3D rotations, a hitchhiker’s guide to SO (3) [J]. arxiv preprint arxiv:2404.11735, 2024.Search in Google Scholar
Tan M, Le Q V. EfficientNetV2: Smaller Models and Faster Training [J]. 2021. DOI:10.48550/arXiv.2104.00298.TanMLeQ V.EfficientNetV2: Smaller Models and Faster Training [J]. 2021. DOI:10.48550/arXiv.2104.00298.Open DOISearch in Google Scholar
Xiangyu Zhu, Zhen Lei, Xiaoming Liu 0002, et al. Face alignment across large poses: a 3d solution. [J]. CoRR, 2015.ZhuXiangyuLeiZhenLiu 0002XiaomingFace alignment across large poses: a 3d solution. [J]. CoRR, 2015.Search in Google Scholar
Zhu X, Lei Z, Yan J, et al. High-fidelity Pose and Expression Normalization for face recognition in the wild [J]. IEEE, 2015. DOI:10.1109/CVPR.2015.7298679.ZhuXLeiZYanJHigh-fidelity Pose and Expression Normalization for face recognition in the wild [J]. IEEE, 2015. DOI:10.1109/CVPR.2015.7298679.Open DOISearch in Google Scholar
Fanelli G, Matthias Dantone. Random Forests for Real Time 3D Face Analysis [J]. International Journal of Computer Vision, 2013, 101(3):437-458. DOI:10.1007/s11263-012-0549-0.FanelliGDantoneMatthias. Random Forests for Real Time 3D Face Analysis [J]. International Journal of Computer Vision, 2013, 101(3):437-458. DOI:10.1007/s11263-012-0549-0.Open DOISearch in Google Scholar
Hempel T, Abdelrahman A A, Al-Hamadi A.6D Rotation Representation for Unconstrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.12555.HempelTAbdelrahmanA AAl-HamadiA.6D Rotation Representation for Unconstrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.12555.Open DOISearch in Google Scholar
Zhang K, Zhang Z, Li Z, et al. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks [J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. DOI:10.1109/LSP.2016.2603342.ZhangKZhangZLiZJoint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks [J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. DOI:10.1109/LSP.2016.2603342.Open DOISearch in Google Scholar
Liu H, Fang S, Zhang Z, et al. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation [J]. IEEE Transactions on Multimedia, 2021, PP (99): 1-1. DOI:10.1109/TMM.2021.3081873.LiuHFangSZhangZMFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation [J]. IEEE Transactions on Multimedia, 2021, PP (99): 1-1. DOI:10.1109/TMM.2021.3081873.Open DOISearch in Google Scholar
Aghli N, Ribeiro E. A Data-Driven Approach to Improve 3D Head-Pose Estimation[C]//International Symposium on Visual Computing. Springer, Cham, 2021. DOI:10.1007/978-3-030-90439-5_43.AghliNRibeiroE.A Data-Driven Approach to Improve 3D Head-Pose Estimation[C]//International Symposium on Visual Computing. Springer, Cham, 2021. DOI:10.1007/978-3-030-90439-5_43.Open DOISearch in Google Scholar
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition [J]. IEEE, 2016. DOI:10.1109/CVPR.2016.90.HeKZhangXRenSDeep Residual Learning for Image Recognition [J]. IEEE, 2016. DOI:10.1109/CVPR.2016.90.Open DOISearch in Google Scholar