Acerca de este artículo
Publicado en línea: 28 mar 2024
Páginas: 1 - 9
DOI: https://doi.org/10.2478/ijanmc-2024-0001
Palabras clave
© 2024 Ruocheng Ma et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Comparative experimental results of different models
Accuracy\Model | Category 1 Accuracy | Category 2 Accuracy | Category 3 Accuracy | Category 4 Accuracy | Average accuracy |
MAML | 82.16% | 72.45% | 81.3% | 85.97% | 80.47% |
MAML-New | 86.42% | 79.70% | 87.17% | 89.19% | 85.62% |
ResNet 18-layers | 81.7% | 62.1% | 82.4% | 90.1% | 73.45% |
LSTM | 81.1% | 68.0% | 80.8% | 80.3% | 77.55% |
Partial network parameter values for MAML and MAML-New
Parameter | Value | Meaning |
---|---|---|
epoch | 600 | Training epochs |
k | 4 | Number of sample categories |
k_spt | 20 | Number of support set samples |
k_qry | 30 | Number of query set samples |
imgsz | 180 | Dimension of input data |
imgc | 1 | Number of channels for input data |
task_num (batch_size) | 16 | Training batch of samples |
meta_lr | 1e-3 | First gradient update learning rate |
update_lr | 0.01 | Second gradient update learning rate |