Cite

Adenle AA, Johnsen, B, Szewczyk NJ (2009) Review of the results from the International C. elegans first experiment (ICE-FIRST). Advances in Space Research44(2): 210–216AdenleAAJohnsenBSzewczykNJ2009Review of the results from the International C. elegans first experiment (ICE-FIRST)Advances in Space Research44221021610.1016/j.asr.2009.04.008271981720161164Search in Google Scholar

Altun ZF, Hall DH (2006) Introduction to C. elegans anatomy. In WormAtlas. http://www.wormatlas.org/ver1/handbook/anatomyintro/anatomyintro.htm (Accessed June 20, 2018)AltunZFHallDH2006Introduction to C. elegans anatomyInWormAtlashttp://www.wormatlas.org/ver1/handbook/anatomyintro/anatomyintro.htm (Accessed June 20, 2018)Search in Google Scholar

Avery L, You Y (2012) C. elegans feeding. In WormBook (ed. The C. elegans research community)AveryLYouY2012C. elegans feedingInWormBook(ed. The C. elegans research community)Search in Google Scholar

Brooks NE, Myburgh KH (2014) Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Frontiers in Physiology5: 99BrooksNEMyburghKH2014Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathwaysFrontiers in Physiology59910.3389/fphys.2014.00099395599424672488Search in Google Scholar

Chung HY, Hupe DC, Otto GP, Sprenger M, Bunck AC, Dorer MJ, Bockmeyer CL, Deigner HP, Graler MH, Claus RA (2016) Acid sphingomyelinase promotes endothelial stress response in systemic inflammation and sepsis. Molecular Medicine22: 412–423.ChungHYHupeDCOttoGPSprengerMBunckACDorerMJBockmeyerCLDeignerHPGralerMHClausRA2016Acid sphingomyelinase promotes endothelial stress response in systemic inflammation and sepsisMolecular Medicine2241242310.2119/molmed.2016.00140507241427341515Search in Google Scholar

Cutler R, Pederson W, Camandola S, Rothstein J, Mattson M (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology52: 448–457CutlerRPedersonWCamandolaSRothsteinJMattsonM2002Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosisAnnals of Neurology5244845710.1002/ana.1031212325074Search in Google Scholar

Fanzani A, Conraads VM, Penna F, Martinet W (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update. Journal of Cachexia, Saropenia and Muscle3: 163–179FanzaniAConraadsVMPennaFMartinetW2012Molecular and cellular mechanisms of skeletal muscle atrophy: an updateJournal of Cachexia, Saropenia and Muscle316317910.1007/s13539-012-0074-6342418822673968Search in Google Scholar

Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. Journal of Experimental Biology204: 3201–3208FittsRHRileyDRWidrickJJ2001Functional and structural adaptations of skeletal muscle to microgravityJournal of Experimental Biology2043201320810.1242/jeb.204.18.320111581335Search in Google Scholar

Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatwoski JG, Riley DA (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. The Journal of Physiology588(Pt 18): 3567–3592FittsRHTrappeSWCostillDLGallagherPMCreerACCollotonPAPetersJRRomatwoskiJGRileyDA2010Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibresThe Journal of Physiology588Pt 183567359210.1113/jphysiol.2010.188508298851920660569Search in Google Scholar

Henriques A, Croixmarie V, Bouscary A, Mosbach A, Keime C, Boursier-Neyret C, Walter B, Spedding M, Loeffler JP (2018) Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosis. Frontiers in Molecular Neuroscience10: 433HenriquesACroixmarieVBouscaryAMosbachAKeimeCBoursier-NeyretCWalterBSpeddingMLoefflerJP2018Sphingolipid metabolism is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of amyotrophic lateral sclerosisFrontiers in Molecular Neuroscience1043310.3389/fnmol.2017.00433575855729354030Search in Google Scholar

Higashibata A, Hashizume T, Nemoto K, Higashitani N, Etheridge T, Mori C, Haranda S, Sugimoto T, Szewcyzk NJ, Baba SA, Mogami Y, Fukui K, Higashitani A (2016) Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. npj Microgravity2: 15022HigashibataAHashizumeTNemotoKHigashitaniNEtheridgeTMoriCHarandaSSugimotoTSzewcyzkNJBabaSAMogamiYFukuiKHigashitaniA2016Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegansnpj Microgravity21502210.1038/npjmgrav.2015.22551551828725720Search in Google Scholar

Higashibata A, Szewczyk N, Conley C, Imamizo-Sato M, Higashitani A, Ishioka N (2006) Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. Journal of Experimental Biology209: 3209–3218HigashibataASzewczykNConleyCImamizo-SatoMHigashitaniAIshiokaN2006Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflightJournal of Experimental Biology2093209321810.1242/jeb.0236516888068Search in Google Scholar

Higashitani A, Hashizume T, Sugimoto T, Mori C, Nemoto K, Etheridge T, Higshitani N, Takanami T, Suzuki H, Fukui K, Yamazaki T, Ishioka N, Szewczyk N, Higashibata A (2009) C. elegans RNai space experiment (CERISE) in Japanese Experiment Module KIBO. Biological Sciences in Space23(4): 183–187HigashitaniAHashizumeTSugimotoTMoriCNemotoKEtheridgeTHigshitaniNTakanamiTSuzukiHFukuiKYamazakiTIshiokaNSzewczykNHigashibataA2009C. elegans RNai space experiment (CERISE) in Japanese Experiment Module KIBOBiological Sciences in Space23418318710.2187/bss.23.183292458420729992Search in Google Scholar

Jana A, Hogan E, Pahan K (2009) Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death. Journal of Neurological Science278(1–2): 5–15JanaAHoganEPahanK2009Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and deathJournal of Neurological Science2781–251510.1016/j.jns.2008.12.010266088719147160Search in Google Scholar

Kim Y, Sun H (2012) ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging target. PLOS ONE7(9): e45890KimYSunH2012ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging targetPLOS ONE79e4589010.1371/journal.pone.0045890345794523049887Search in Google Scholar

Kornhuber J, Rhein C, Müller CP, Mühle C (2015) Secretory sphingomyelinase in health and disease. Journal of Biological Chemistry396(6–7): 707–36KornhuberJRheinCMüllerCPMühleC2015Secretory sphingomyelinase in health and diseaseJournal of Biological Chemistry3966–77073610.1515/hsz-2015-010925803076Search in Google Scholar

Lin X, Hengartner M, Kolesnick R (1998) Caenorhabditis elegans contains two distinct acid sphingomyelinases. Journal of Biological Chemistry272(23): 14374–14279LinXHengartnerMKolesnickR1998Caenorhabditis elegans contains two distinct acid sphingomyelinasesJournal of Biological Chemistry27223143741427910.1074/jbc.273.23.143749603947Search in Google Scholar

Loeffler JP, Picchiarelli G, Dupuis L, De Aguilar JL (2016) The role of skeletal muscle in Amyotrophic Lateral Scleosis. Brain Pathology26: 227–236LoefflerJPPicchiarelliGDupuisLDe AguilarJL2016The role of skeletal muscle in Amyotrophic Lateral ScleosisBrain Pathology2622723610.1111/bpa.12350802927126780251Search in Google Scholar

Possik E, Pause A (2015) Measuring oxidative stress resistance of Caenorhabditis elegans in a 96 well microtiter wells. Journal of Visualized Experiments99: 52746PossikEPauseA2015Measuring oxidative stress resistance of Caenorhabditis elegans in a 96 well microtiter wellsJournal of Visualized Experiments995274610.3791/52746-vSearch in Google Scholar

Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I (2016a) Disease-induced muscle atrophy and fatigue. Medicine & Science in Sports & Exercise48(11): 2307–2319PowersSKLynchGSMurphyKTReidMBZijdewindI2016aDisease-induced muscle atrophy and fatigueMedicine & Science in Sports & Exercise48112307231910.1249/MSS.0000000000000975506919127128663Search in Google Scholar

Powers SK, Morton AB, Ahn B, Smuder AJ (2016b) Redox control of skeletal muscle atrophy. Free Radical Biology and Medicine98: 208–217PowersSKMortonABAhnBSmuderAJ2016bRedox control of skeletal muscle atrophyFree Radical Biology and Medicine9820821710.1016/j.freeradbiomed.2016.02.021500667726912035Search in Google Scholar

Selch F, Higashibata A, Imamizo-Sato M, Higashitani A, Ishioka N, Szewczyk NJ, Conley CA (2008) Genomic response to the nematode Caenorhabditis elegans to spaceflight. Advances in Space Research41(5): 807–815SelchFHigashibataAImamizo-SatoMHigashitaniAIshiokaNSzewczykNJConleyCA2008Genomic response to the nematode Caenorhabditis elegans to spaceflightAdvances in Space Research41580781510.1016/j.asr.2007.11.015228857718392117Search in Google Scholar

Szewczyk NJ (2005) Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle Columbia. Astrobiology5(6): 690–705SzewczykNJ2005Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle ColumbiaAstrobiology5669070510.1089/ast.2005.5.69016379525Search in Google Scholar

Szewczyk NJ, Jacobson LA (2005). Signal-transduction networks and the regulation of muscle protein degradation. International Journal of Biochemistry and Cell Biology37(10): 1997–2011.SzewczykNJJacobsonLA2005Signal-transduction networks and the regulation of muscle protein degradationInternational Journal of Biochemistry and Cell Biology37101997201110.1016/j.biocel.2005.02.020Search in Google Scholar

Takahashi K, Okumura H, Guo R, Naruse K (2017) Effects of oxidative stress on the cardiovascular system in microgravity. Journal of Molecular Science18: 1426TakahashiKOkumuraHGuoRNaruseK2017Effects of oxidative stress on the cardiovascular system in microgravityJournal of Molecular Science18142610.3390/ijms18071426Search in Google Scholar

Tanaka K, Nishimura N, Kawai YJ (2017) Adaptation to microgravity, deconditioning and countermeasures. The Journal of Physiological Sciences67: 271–281TanakaKNishimuraNKawaiYJ2017Adaptation to microgravity, deconditioning and countermeasuresThe Journal of Physiological Sciences6727128110.1007/s12576-016-0514-8Search in Google Scholar

van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet390: 2084–98van EsMAHardimanOChioAAl-ChalabiAPasterkampRJVeldinkJHvan den BergLH2017Amyotrophic lateral sclerosisLancet39020849810.1016/S0140-6736(17)31287-4Search in Google Scholar

Warren P, Golden A, Hanover J, Love D, Shephard F, Szewczyk N (2013) Evaluation of the fluids mixing enclosure system for life science experiments during a commercial Caenorhabditis elegans spaceflight experiment. Advances in Space Research51(12): 2241–2250WarrenPGoldenAHanoverJLoveDShephardFSzewczykN2013Evaluation of the fluids mixing enclosure system for life science experiments during a commercial Caenorhabditis elegans spaceflight experimentAdvances in Space Research51122241225010.1016/j.asr.2013.02.002368498523794777Search in Google Scholar

eISSN:
2332-7774
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Materials Sciences, Physics