Cite

Aggeli A, Boden N (2006) Self-assembling peptide gels. In Molecular Gels: Materials with Self-assembled Fibrillar Networks, pp 99–130. Dordrecht: SpringerAggeliABodenN2006Self-assembling peptide gelsInMolecular Gels: Materials with Self-assembled Fibrillar Networks99130DordrechtSpringer10.1007/1-4020-3689-2_4Search in Google Scholar

Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers: what you see is not always what you get. Amyloid12(2): 88–95BitanGFradingerEASpringSMTeplowDB2005Neurotoxic protein oligomers: what you see is not always what you getAmyloid122889510.1080/13506120500106958Search in Google Scholar

Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CCF, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature385(6619): 787BoothDRSundeMBellottiVRobinsonCVHutchinsonWLFraserPEHawkinsPNDobsonCMRadfordSEBlakeCCFPepysMB1997Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesisNature385661978710.1038/385787a0Search in Google Scholar

Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416(6880): 507–511BucciantiniMGiannoniEChitiFBaroniFFormigliLZurdoJTaddeiNRamponiGDobsonCMStefaniM2002Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseasesNature416688050751110.1038/416507aSearch in Google Scholar

Burnett LC, Burnett BJ, Li B, Durrance ST, Xu S (2014) A lysozyme concentration, pH, and time-dependent isothermal transformation diagram reveals fibrous amyloid and non-fibrous, amorphous aggregate species. Open Journal of Biophysics4: 39–50BurnettLCBurnettBJLiBDurranceSTXuS2014A lysozyme concentration, pH, and time-dependent isothermal transformation diagram reveals fibrous amyloid and non-fibrous, amorphous aggregate speciesOpen Journal of Biophysics4395010.4236/ojbiphy.2014.42006Search in Google Scholar

Canet D, Sunde M, Last AM, Miranker A, Spencer A, Robinson CV, Dobson CM (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry38(20): 6419–6427CanetDSundeMLastAMMirankerASpencerARobinsonCVDobsonCM1999Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variantsBiochemistry38206419642710.1021/bi983037tSearch in Google Scholar

Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry75: 333–366ChitiFDobsonCM2006Protein misfolding, functional amyloid, and human diseaseAnnual Review of Biochemistry7533336610.1146/annurev.biochem.75.101304.123901Search in Google Scholar

Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proceedings of the National Academy of Sciences USA96(7): 3590–3594ChitiFWebsterPTaddeiNClarkAStefaniMRamponiGDobsonCM1999Designing conditions for in vitro formation of amyloid protofilaments and fibrilsProceedings of the National Academy of Sciences USA9673590359410.1073/pnas.96.7.3590Search in Google Scholar

Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. Journal of Biological Chemistry277(35): 32046–32053DahlgrenKNManelliAMStineWBBakerLKKrafftGALaDuMJ2002Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viabilityJournal of Biological Chemistry27735320463205310.1074/jbc.M201750200Search in Google Scholar

Dobson CM (2004) In the footsteps of alchemists. Science304(5675): 1259–1262DobsonCM2004In the footsteps of alchemistsScience30456751259126210.1126/science.1093078Search in Google Scholar

Estroff LA, Hamilton AD (2006) Cryo-tem, x-ray diffraction and modeling of an organic hydrogel. In Molecular Gels: Materials with Self-assembled Fibrillar Networks, pp 721–742. Dordrecht: SpringerEstroffLAHamiltonAD2006Cryo-tem, x-ray diffraction and modeling of an organic hydrogelInMolecular Gels: Materials with Self-assembled Fibrillar Networks721742DordrechtSpringer10.1007/1-4020-3689-2_21Search in Google Scholar

Frare E, Mossuto MF, de Laureto PP, Dumoulin M, Dobson CM, Fontana A (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Journal of Molecular Biology361(3): 551–561FrareEMossutoMFde LauretoPPDumoulinMDobsonCMFontanaA2006Identification of the core structure of lysozyme amyloid fibrils by proteolysisJournal of Molecular Biology361355156110.1016/j.jmb.2006.06.055Search in Google Scholar

Fujiwara S, Matsumoto F, Yonezawa Y (2003) Effects of salt concentration on association of the amyloid protofilaments of hen egg white lysozyme studied by time-resolved neutron scattering. Journal of Molecular Biology331(1): 21–28FujiwaraSMatsumotoFYonezawaY2003Effects of salt concentration on association of the amyloid protofilaments of hen egg white lysozyme studied by time-resolved neutron scatteringJournal of Molecular Biology3311212810.1016/S0022-2836(03)00722-8Search in Google Scholar

Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an sh3 domain. Proceedings of the National Academy of Sciences USA95(8): 4224–4228GuijarroJISundeMJonesJACampbellIDDobsonCM1998Amyloid fibril formation by an sh3 domainProceedings of the National Academy of Sciences USA9584224422810.1073/pnas.95.8.4224Search in Google Scholar

Hill SE, Miti T, Richmond T, Muschol M (2011). Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils. PLOS One6(4): e18171HillSEMitiTRichmondTMuscholM2011Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrilsPLOS One64e1817110.1371/journal.pone.0018171Search in Google Scholar

Hill SE, Robinson J, Matthews G, Muschol M (2009) Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophysical Journal96(9): 3781–3790HillSERobinsonJMatthewsGMuscholM2009Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusionBiophysical Journal9693781379010.1016/j.bpj.2009.01.044Search in Google Scholar

Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy of Sciences USA99(14): 9196–9201JiménezJLNettletonEJBouchardMRobinsonCVDobsonCMSaibilHR2002The protofilament structure of insulin amyloid fibrilsProceedings of the National Academy of Sciences USA99149196920110.1073/pnas.142459399Search in Google Scholar

Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. Journal of Biological Chemistry276(16): 12945–12950KallbergYGustafssonMPerssonBThybergJJohanssonJ2001Prediction of amyloid fibril-forming proteinsJournal of Biological Chemistry27616129451295010.1074/jbc.M010402200Search in Google Scholar

Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300(5618): 486–489KayedRHeadEThompsonJLMcIntireTMMiltonSCCotmanCWGlabeCG2003Common structure of soluble amyloid oligomers implies common mechanism of pathogenesisScience300561848648910.1126/science.1079469Search in Google Scholar

Kelly JW (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Current Opinion in Structural Biology6(1): 11–17KellyJW1996Alternative conformations of amyloidogenic proteins govern their behaviorCurrent Opinion in Structural Biology61111710.1016/S0959-440X(96)80089-3Search in Google Scholar

Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Current Opinion in Structural Biology17(1): 48–57KodaliRWetzelR2007Polymorphism in the intermediates and products of amyloid assemblyCurrent Opinion in Structural Biology171485710.1016/j.sbi.2007.01.007Search in Google Scholar

Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formation. Proceedings of the National Academy of Sciences USA96(7): 3688–3693KowalewskiTHoltzmanDM1999In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formationProceedings of the National Academy of Sciences USA9673688369310.1073/pnas.96.7.3688Search in Google Scholar

Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature443(7113): 774–779LansburyPTLashuelHA2006A century-old debate on protein aggregation and neurodegeneration enters the clinicNature443711377477910.1038/nature05290Search in Google Scholar

Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. Journal of Biological Chemistry282(14): 10311–10324NeculaMKayedRMiltonSGlabeCG2007Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinctJournal of Biological Chemistry28214103111032410.1074/jbc.M608207200Search in Google Scholar

Pellarin R, Caflisch A (2006) Interpreting the aggregation kinetics of amyloid peptides. Journal of Molecular Biology360(4): 882–892PellarinRCaflischA2006Interpreting the aggregation kinetics of amyloid peptidesJournal of Molecular Biology360488289210.1016/j.jmb.2006.05.033Search in Google Scholar

Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CCF, Terry CJ, Feest TG, Zalin AM, Hsuan JJ (1993). Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature362(6420): 553PepysMBHawkinsPNBoothDRVigushinDMTennentGASoutarAKTottyNNguyenOBlakeCCFTerryCJFeestTGZalinAMHsuanJJ1993Human lysozyme gene mutations cause hereditary systemic amyloidosisNature362642055310.1038/362553a0Search in Google Scholar

Perutz M, Finch J, Berriman J, Lesk A (2002) Amyloid fibers are water-filled nanotubes. Proceedings of the National Academy of Sciences USA99(8): 5591–5595PerutzMFinchJBerrimanJLeskA2002Amyloid fibers are water-filled nanotubesProceedings of the National Academy of Sciences USA9985591559510.1073/pnas.042681399Search in Google Scholar

Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nature Medicine10(7): S10RossCAPoirierMA2004Protein aggregation and neurodegenerative diseaseNature Medicine107S1010.1038/nm1066Search in Google Scholar

Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction. Advances in Protein Chemistry50: 123–159SundeMBlakeC1997The structure of amyloid fibrils by electron microscopy and x-ray diffractionAdvances in Protein Chemistry5012315910.1016/S0065-3233(08)60320-4Search in Google Scholar

Tabony J, Rigotti N, Glade N, Cortès S (2007) Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophysical Chemistry127(3): 172–180TabonyJRigottiNGladeNCortèsS2007Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparationsBiophysical Chemistry127317218010.1016/j.bpc.2007.01.010Search in Google Scholar

Terech P (2006) Gels. In Encyclopedia of Surface and Colloid Science, 2nd ed, vol 4, pp 2678–2696. London: Taylor and FrancisTerechP2006GelsInEncyclopedia of Surface and Colloid Science2nd ed426782696LondonTaylor and Francis10.1081/E-ESCS3-120000083Search in Google Scholar

Wang F, Hayter J, Wilson LJ (1996) Salt-induced aggregation of lysozyme studied by cross-linking with glutaraldehyde: implications for crystal growth. Acta Crystallographica. Section D, Biological Crystallography52(Pt 5): 901–908WangFHayterJWilsonLJ1996Salt-induced aggregation of lysozyme studied by cross-linking with glutaraldehyde: implications for crystal growthActa Crystallographica. Section D, Biological Crystallography52Pt 590190810.1107/S0907444996005227Search in Google Scholar

Ward S, Himmelstein D, Lancia J, Binder L (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochemical Society Transactions40(4): 667WardSHimmelsteinDLanciaJBinderL2012Tau oligomers and tau toxicity in neurodegenerative diseaseBiochemical Society Transactions40466710.1042/BST20120134Search in Google Scholar

Woodard D, Bell D, Tipton D, Durrance S, Cole L, Li B, Xu S (2014) Gel formation in protein amyloid aggregation: a physical mechanism for cytotoxicity. PLOS One9(4): e94789WoodardDBellDTiptonDDurranceSColeLLiBXuS2014Gel formation in protein amyloid aggregation: a physical mechanism for cytotoxicityPLOS One94e9478910.1371/journal.pone.0094789Search in Google Scholar

eISSN:
2332-7774
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Materials Sciences, Physics