1. bookVolumen 29 (2021): Edición 2 (December 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1584-3289
Primera edición
30 Jul 2019
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Bohr Radius for Goodman-Ronning Type Harmonic Univalent Functions

Publicado en línea: 30 Mar 2022
Volumen & Edición: Volumen 29 (2021) - Edición 2 (December 2021)
Páginas: 107 - 126
Recibido: 31 Oct 2021
Aceptado: 26 Nov 2021
Detalles de la revista
License
Formato
Revista
eISSN
1584-3289
Primera edición
30 Jul 2019
Calendario de la edición
2 veces al año
Idiomas
Inglés

[1] Y. Abu Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Comp. Var and Ell.Eqns., vol. 55, no. 11, 2010, 1071-1078.10.1080/17476931003628190 Search in Google Scholar

[2] Y. Abu Muhanna, R. M. Ali, Z. C. Ng, S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Applns., vol. 420, 2014, 124-136.10.1016/j.jmaa.2014.05.076 Search in Google Scholar

[3] Y. Abu Muhanna, R. M. Ali, Bohr phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl., vol. 379, 2011, 512-517.10.1016/j.jmaa.2011.01.023 Search in Google Scholar

[4] J. Clunie, T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A.I., vol. 9, 1984, 3-25.10.5186/aasfm.1984.0905 Search in Google Scholar

[5] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.10.1017/CBO9780511546600 Search in Google Scholar

[6] H. Bohr, A theorem concerning power series, Proc.Lond. Math. Soc. s2-13, 1914, 1-5.10.1112/plms/s2-13.1.1 Search in Google Scholar

[7] I. R. Kayumov, S. Ponnusamy, Improved version of Bohr’s inequality, C. R. Acad. Sci. Paris, I, vol. 356, 2018, 272-277.10.1016/j.crma.2018.01.010 Search in Google Scholar

[8] H. Lewy, On the vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., vol. 42, 1936, 689-710.10.1090/S0002-9904-1936-06397-4 Search in Google Scholar

[9] M. B. Ahamed, V. Allu, H. Halder, Bohr Radius for Certain Close-to-Convex Harmonic Mappings, Anal. and Math.Phy., vol. 11, no.3, 2021, 1-30.10.1007/s13324-021-00551-y Search in Google Scholar

[10] S. Ponnusamy, R. Vijayakumar, K. J. Wirths, New inequalities for the coefficients f unimodular bounded functions, Res. in Math., vol. 75, no. 3, 2020, 1-11.10.1007/s00025-020-01240-1 Search in Google Scholar

[11] T. Rosy, B. A. Stephen, K. G. Subramanian, J. M.Jahangiri, Goodman-Ronning - Type Harmonic Univalent Functions, Kyungpook Mathematical Journal, vol. 41, no. 1, 2001, 45-54. Search in Google Scholar

[12] V. Allu, H. Halder, Bohr Phenomenon for Certain Subclasses of Harmonic Mappings, Bull. des. Sci. Math., vol. 173, 2021, Article 103053.10.1016/j.bulsci.2021.103053 Search in Google Scholar

Artículos recomendados de Trend MD