[
1. Almášiová, V., Holovská, K., Šimaiová, V., Beňová, K., Raček, A., Račeková, E., et al., 2017: The thermal effect of 2.45 GHz microwave radiation on rat testes. Acta Vet. Brno, 86, 4, 413‒419. DOI: 10.2754/avb201786040413.
]Search in Google Scholar
[
2. BioInitiative Report, 2022: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF). Available at https://bioinitiative.org.
]Search in Google Scholar
[
3. Elder, J. A., 2003: Ocular effects of radiofrequency energy. Bioelectromagnetism, 6, S148‒S161. DOI: 10.1002/bem.10117.
]Search in Google Scholar
[
4. Foletti, A., Ledda, M., De Carlo, F., Grimaldi, S., Lisi, A., 2010: Calcium ion cyclotron resonance (ICR), 7.0 Hz, 9.2 microT magnetic field exposure initiates differentiation of pituitary corticotrope-derived AtT20 D16V cells. Electromagn. Biol. Med., 29, 3, 63‒71. DOI: 10.3109/15368378.2010.482480.
]Search in Google Scholar
[
5. Garbuz, D. G., 2017: Regulation of heat shock gene expression in response to stress. Mol. Biol., 51, 3, 352‒367. DOI: 10.7868/S0026898417020100.
]Search in Google Scholar
[
6. Havas, M., 2013: Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev. Environ. Health, 28, 2, 75–84. DOI: 10.1515/reveh-2013-0004.
]Search in Google Scholar
[
7. Holovská, K., Andrašková, S., Almášiová, V., 2023: The influence of Wi-Fi radiation on the structure of yolk sac of chicken embryo on day 9 of incubation (In Slovak). 26th Košice Morphological Day: Proceedings, 1st edn., UPJŠ in Košice.
]Search in Google Scholar
[
8. International Commission on Non-Ionizing Radiation Protection, 2020: Principles for non-ionizing radiation protection. Health Phys., 118, 5, 477–482. DOI: 10.1097/HP.0000000000001252.
]Search in Google Scholar
[
9. Kalns, J., Ryan, K. L., Mason, P. A., Bruno, J. G., Gooden, R., Kiel, J. L., 2000: Oxidative stress precedes circulatory failure induced by 35-GHz microwave heating. Shock, 13, 1, 52–59. DOI: 10.1097/00024382-200013010-00010.
]Search in Google Scholar
[
10. Kan, P., Simonsen, S. E., Lyon, J. L., Kestle, J. R., 2008: Cellular phone use and brain tumour: a meta-analysis. J. Neuro-Oncol., 86, 1, 71–78. DOI: 10.1007/s11060-007-9432-1.
]Search in Google Scholar
[
11. Khurana, V. G., Teo, C., Kundi, M., Hardell, L., Carl-berg, M., 2009: Cell phones and brain tumours: A review including the long-term epidemiologic data. Surg. Neurol., 72, 205–214. DOI: 10.1016/j.surneu.2009.01.019.
]Search in Google Scholar
[
12. Koponen, L. M., Peterchev, A. V., 2020: Transcranial magnetic stimulation: Principles and applications. In He, B. (Ed.): Neural Engineering. Springer, Cham. DOI: 10.1007/978-3-030-43395-67.
]Search in Google Scholar
[
13. Lai, H., Singh, N., 2004: Magnetic field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect., 112, 687‒694. DOI: 10.1289/ehp.6355.
]Search in Google Scholar
[
14. Lee, S. S., Kim, H. R., Kim, M. S., Park, S. H., Kim, D. W., 2014: Influence of smart phone Wi-Fi signals on adipose-derived stem cells. J. Cranofac. Surg., 25, 5, 1902‒1907. DOI: 10.1097/SCS.0000000000000939.
]Search in Google Scholar
[
15. Mehrotra, P., Chatterjee, B., Sen, S., 2019: EM-wave bio-sensors: a review of RF, microwave, mm-wave and optical sensing. Sensors, 19, 5, 1013. DOI: 10.3390/s19051013.
]Search in Google Scholar
[
16. Mild, K. H., Lundström, R., Wilén, J., 2019: Non-ionizing radiation in Swedish health care ‒ exposure and safety aspects. Int. J. Environ. Res. Public Health, 16, 1186. DOI: 10.3390/ijerph16071186.
]Search in Google Scholar
[
17. Myung, S. K., Ju, W., McDonnell, D. D., Lee, Y. J., Kazinets, G., Cheng, C. T., 2009: Mobile phone use and risk of tumours: A meta-analysis. J. Clin. Oncol., 27, 33, 5565–5572. DOI: 10.1200/JCO.2008.21.6366.
]Search in Google Scholar
[
18. Omer, H., 2021: Radiobiological effects and medical applications of non-ionizing radiation. Saudi J. Biol. Sci., 28, 10, 5585‒5592. DOI: 10.1016/j.sjbs.2021.05.071.
]Search in Google Scholar
[
19. Othman, H., Ammari, M., Rtibi, K., Bensaid, N., Sakly, M., Abdelmelek, H., 2018: Postnatal development and behaviour effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. Environ. Toxicol. Pharmacol., 52, 239–244. DOI: 10.1016/j. etap.2017.04.016.
]Search in Google Scholar
[
20. Pall, M. L., 2018: Wi-Fi is an important threat to human health. Environ. Res., 164, 405–416. DOI: 10.1016/j.envres.2018.01.035.
]Search in Google Scholar
[
21. Panagopoulos, D. J., Johansson, O., Carlo, G. L., 2015: Polarization: A key difference between man-made and natural electromagnetic fields, in regard to biological activity. Sci. Rep., 12, 5, 14914. DOI: 10.1038/srep14914.
]Search in Google Scholar
[
22. Park, H. K., Lee, J. E., Lim, J. F., Kang, B. H., 2014: Mitochondrial Hsp90s suppress calcium-mediated stress signals propagating from the mitochondria to the ER in cancer cells. Mol. Cancer, 13, 148. DOI: 10.1186/1476-4598-13-148.
]Search in Google Scholar
[
23. Peyman, A, Khalid, M., Calderon, C., Addison, D., Mee, T., Maslanyj, M., Mann, S., 2011: Assessment of exposure to electromagnetic fields from wireless computer networks (Wi-Fi) in schools; Results of laboratory measurements. Health Phys., 100, 6, 594‒612. DOI: 10.1097/HP.0b013e318200e203.
]Search in Google Scholar
[
24. Pilla, A. A., 2012: Electromagnetic fields instantaneously modulate nitric oxide signalling in challenged biological systems. Biochem. Biophys. Res. Commun., 28, 426, 330‒333. DOI: 10.1016/j.bbrc.2012.08.078.
]Search in Google Scholar
[
25. Redmayne, M., Johansson, O., 2015: Radiofrequency exposure in young and old: different sensitivities in the light of age-relevant natural differences. Rev. Environ. Health, 30, 323‒335. DOI: 10.1515/reveh-2015-0030.
]Search in Google Scholar
[
26. Sage, C., Burgio, E., 2017: Electromagnetic fields, pulsed radiofrequency radiation, and epigenetics: how wireless technologies may affect childhood development. Child. Dev., 89, 1, 129‒136. DOI: 10.1111/cdev.12824.
]Search in Google Scholar
[
27. Sypniewska, R. K., Millenbaugh, N. J., Kiel, J. L., Bly-stone, R. V., Ringham, H. N., Mason, P. A., Witzmann, F. A., 2010: Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimetre waves. Bioelectromagnetism, 31, 8, 656‒663. DOI: 10.1002/bem.20598.
]Search in Google Scholar
[
28. Van Boxem, K., Huntoon, M., Van Zundert, J., Patijn, J., van Kleef, M., Joosten, E. A., 2014: Pulsed radiofrequency: a review of the basic science as applied to the patho-physiology of radicular pain: a call for clinical translation. Reg. Anesth. Pain. Med., 39, 2, 149‒159. DOI: 10.1097/AAP.0000000000000063.
]Search in Google Scholar
[
29. Wainwright, P., 2000: Thermal effects of radiation from cellular telephones. Phys. Med. Biol., 45, 2363. DOI: 10.1088/0031-9155/45/8/321.
]Search in Google Scholar
[
30. Wang, C., Wang, X., Zhou, H., Dong, G., Guan, X., Wang, L., et al., 2015: Effects of pulsed 2.856 GHz microwave exposure on BM-MSCs isolated from C57BL/6 mice. PLOS ONE, 10, 2, e0117550, DOI: 10.1371/journal.pone.0117550.
]Search in Google Scholar
[
31. Woelders, H., de Wit, A., Lourens, A., Stockhofe, N., Engel, B., Hulsegge, I., et al., 2017: Study of potential health effects of electromagnetic fields of telephony and Wi-Fi, using chicken embryo development as animal model. Bioelectromagnetism, 38, 186‒203. DOI: 10.1002/bem.22026.
]Search in Google Scholar
[
32. Wyde, M. E., Horn, T. L., Capstick, M. H., Ladbury, J. M., Koepke, G., Wilson, P. F., et al., 2018: Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetism, 39, 3, 190‒199. DOI: 10.1002/bem.22116.
]Search in Google Scholar
[
33. Xu, F., Bai, Q., Zhou, K., Ma, L., Duan, J., Zhuang, F., et al., 2016: Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation. Electromagn. Biol. Med., 36, 2, 158‒166. DOI: 10.1080/15368378.2016.1233886.
]Search in Google Scholar
[
34. Yüksel, M., Nazıroglu, M., Özkaya, M. O., 2016: Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine, 52, 2, 352–362. DOI: 10.1007/s12020-015-0795-3.
]Search in Google Scholar
[
35. Zhang, J., Li, M., Kang, E. T., Neoh, K. G., 2016: Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater., 1, 32, 46‒56. DOI: 10.1016/j.actbio.2015.12.024.
]Search in Google Scholar