Cite

1. Adzitey, F., Huda, N., Shariff, A. H. M., 2021: Phenotypic antimicrobial susceptibility of Escherichia coli from raw meats, ready-to-eat meats, and their related samples in One health context. Microorganisms, 9, 2, 326. DOI: 10.3390/microorganisms9020326. Search in Google Scholar

2. CLSI document VET01-S2, 2013: Performance Standards for Antimicrobial Disc and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Clinical and Laboratory Standards Institute, Wayne, USA, 168 pp. Search in Google Scholar

3. Ding, Q., Gao, J., Ding, X., Huang, D., Zhao, Y., Yang, M., 2022: Consumers’ knowledge, attitude, and behaviour towards antimicrobial resistance and antimicrobial use in food production in China. Front. Public Health., 10, 1015950. DOI: 10.3389/fpubh.2022.1015950. Search in Google Scholar

4. EUCAST, 2017: Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. European Committee on Antimicrobial Susceptibility Testing, Växjö, Sweden, 43 pp. Search in Google Scholar

5. ECDC, WHO, 2022: Antimicrobial Resistance Surveillance in Europe. WHO Regional Office for Europe, Copenhagen, Denmark, 164 pp. Available at https://www.ecdc.europa.eu/sites/default/files/documents/Joint-WHO-ECDC-AMR-report-2022.pdf. DOI: 10.2900/112339. Search in Google Scholar

6. EFSA, ECDC, 2022: The European Union One Health 2021 Zoonoses Report. EFSA J., 20, 12, 07666. DOI: 10.2903/j. efsa.2022.7666. Search in Google Scholar

7. Guillaume, G., Verbrugge, D., Chasseur-Libotte, M. L., Moens, W., Collard, J. M., 2000: PCR typing of tetracycline resistance determinants (tetA-E) in Salmonella enterica serotype hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol. Ecol., 32, 1, 77‒85. DOI: 10.1111/j.1574-6941.2000.tb00701.x. Search in Google Scholar

8. Halkman, H. B. D., Halkman, A. K., 2014: Indicator organisms. In Batt, C. A., Patel, P.: Encyclopedia of Food Microbiology. Academic Press, London, 358‒363. Search in Google Scholar

9. Hui, Y. H., 2012: Meat industries: Characteristics and manufacturing processes. In Hui, Y. H.: Handbook of Meat and Meat Processing. CRC Press, Boca Raton, 3‒32. Search in Google Scholar

10. Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., Ishii, S., 2017: Environmental Escherichia coli: Ecology and public health implications – A review. J. Appl. Microbiol., 123, 3, 570‒581. DOI: 10.1111/jam.1346. Search in Google Scholar

11. Kurnia, R. S., Indrawati, A., Mayasari, N. L. P. I., Priadi, A., 2018: Molecular detection of genes encoding resistance to tetracycline and determination of plasmid-mediated resistance to quinolones in avian pathogenic Escherichia coli in Sukabumi, Indonesia. Vet. World, 11, 11, 1581‒1586. DOI: 10.14202/vetworld.2018.1581-1586. Search in Google Scholar

12. Lekagul, A., Tangcharoensathien, V., Yeung, S., 2019: Patterns of antibiotic use in global pig production: a systematic review. Vet. Anim. Sci., 6, 7, 100058. DOI: 10.1016/j. vas.2019.100058. Search in Google Scholar

13. Li, H., Liu, Y., Yang, L., Wu, Y., Shao, B., 2021: Prevalence of Escherichia coli and antibiotic resistance in animal-derived food samples ‒ six districts, Beijing, China. China CDC weekly, 3, 47, 999‒1004. DOI: 10.46234/ccdcw2021.243. Search in Google Scholar

14. Martínez-Vázquez, A. V., Vázquez-Villanueva, J., Leyva-Zapata, L. M., Barrios-García, H., Rivera, G., Bocanegra-García, V., 2021: Multidrug resistance of Escherichia coli strains isolated from bovine faeces and carcasses in Northeast Mexico. Front. Vet. Sci., 8, 643802. DOI: 10.3389/fvets.2021.643802. Search in Google Scholar

15. Nganga, D. K., Musonye, H. A., Kamande, P. K., Kamau, L. M., 2020: Profiling antibiotic resistant bacteria and antibiotic residues in raw chicken products sold around Kenyatta University, Kenya. IJOAB, 4, 2, 76‒88. DOI: 0.20956/ijab. v4i(2).11028. Search in Google Scholar

16. Parvin, M. S., Talukder, S., Ali, M. Y., Chowdhury, E. H., Rahman, M. T., Islam, M. T., 2020: Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh. Pathogens, 9, 6, 420. DOI: 10.3390/pathogens9060420. Search in Google Scholar

17. Patel, S. J., Wellington, M., Shah, R. M., Ferreira, M. J., 2020: Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther., 42, 9, 1649‒1658. DOI: 10.1016/j.clinthera.2020.07.004. Search in Google Scholar

18. Plaza-Rodríguez, C., Mesa-Varona, O., Alt, K., Grobbel, M., Tenhagen, B. A., Kaesbohrer, A., 2021: Comparative analysis of consumer exposure to resistant bacteria through chicken meat consumption in Germany. Microorganisms, 9, 5, 1045. DOI: 10.3390/microorganisms9051045. Search in Google Scholar

19. Ribeiro, J., Silva, V., Monteiro, A., Vieira-Pinto, M., Igrejas, G., Reis, F. S., Barros, L., Poeta, P., 2023: Antibiotic resistance among gastrointestinal bacteria in broilers: A review focused on Enterococcus spp. and Escherichia coli. Animals, 13, 8, 1362. DOI: 10.3390/ani13081362. Search in Google Scholar

20. Robicsek, A., Strahilevitz, J., Sahm, D. F., Jacoby, G. A., Hooper, D. C., 2006: Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother., 50, 8, 2872‒2874. DOI: 10.1128/AAC.01647-05. Search in Google Scholar

21. Sacher-Pirklbauer, A., Klein-Jöbstl, D., Sofka, D., Blanc-Potard, A. B., Hilbert, F., 2021: Phylogenetic groups and antimicrobial resistance genes in Escherichia coli from different meat species. Antibiotics, 10, 12, 1543. DOI: 10.3390/antibiotics10121543. Search in Google Scholar

22. Samtiya, M., Matthews, K. R., Dhewa, T., Puniya, A. K., 2022: Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods, 11, 19, 2966. DOI: 10.3390/foods11192966. Search in Google Scholar

23. Silva, A., Silva, V., Pereira, J. E., Maltez, L., Igrejas, G., Valentão, P., Falco, V., Poeta, P., 2023: Antimicrobial resistance and clonal lineages of Escherichia coli from food-producing animals. Antibiotics, 12, 6, 1061. DOI: 10.3390/antibiotics12061061. Search in Google Scholar

24. STN EN ISO 6887-1, 2017: Microbiology of the Food Chain. Preparation of analytical samples, preparation of stock suspensions and tenfold dilutions for microbiological testing. Part 1: General guidelines for the preparation of stock suspensions and tenfold dilutions. 1‒26. Publ. date: 15. 3. 2017. Search in Google Scholar

25. STN EN ISO 6887-2, 2017: Microbiology of the Food Chain. Preparation of analytical samples, preparation of stock suspensions and tenfold dilutions for microbiological testing. Part 2: Specific guidelines for the treatment of meat and meat products. 1‒9. Publ. date: 15. 3. 2017. Search in Google Scholar

26. STN EN ISO 16649-2, 2007: Food and Feed Microbiology. Horizontal method for the enumeration of ß-glucuronidase-positive Escherichia coli. Part 2: Method for counting colonies cultured at 44 °C using 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide. 1‒12. Publ. date: 1. 3. 2007. Search in Google Scholar

27. Wang, G. C. Y., Wang, Y., 1996: The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology, 142, 5, 1107‒1114. DOI: 10.1099/13500872-142-5-1107. Search in Google Scholar

eISSN:
2453-7837
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine