Cite

1. Ahmad, I., Malak, H. A., Abulreesh, H. H., 2021: Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Res., 27, 101–111. DOI: 10.1016/j.jgar.2021.08.001.Search in Google Scholar

2. Anadón, A., Ares, I., Martínez-Larrañaga, M. R., Martínez, M. A., 2019: Prebiotics and probiotics in feed and animal health. Nutraceuticals in Veterinary Medicine, 261–285. DOI: 10.1007/978-3-030-04624-8_19.Search in Google Scholar

3. Anand, U., Reddy, B., Kumar Singh, V., Kishore Singh, A., Kumar Kesari, K., Tripathi, P., et al., 2021: Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSP) landfill. Antibiotics (Basel), 10, 4, 374. DOI: 10.3390/antibiotics10040374.Search in Google Scholar

4. Arbab, S., Ullah, H., Wang, W., Li, K., Akbar, A., Zhang, J., 2021: Isolation and identification of infection-causing bacteria in dairy animals and determination of their antibiogram. J. Food Qual., 4, 19. DOI: 10.1155/2021/2958304.Search in Google Scholar

5. Bag, M. A. S., Khan, M. S. R., Sami, M. D. H., Begum, F., Islam, M. S., Rahman, M. et al., 2021: Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi J. Biol. Sci., 28, 11, 6317–6323. DOI: 10.1016/j.sjbs.2021.06.099.Search in Google Scholar

6. Bello, F., Echevarría, L., 2022: Evaluation of antibiotic-resistant bacteria and physicochemical parameters in ground-water, impacted by dairy farms in Hatillo, Puerto Rico. PSM Biol. Res., 8, 1, 9–27.Search in Google Scholar

7. Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., Sims, R., 2019: The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11, 1, 222. DOI: 10.3390/su11010222.Search in Google Scholar

8. Checcucci, A., Trevisi, P., Luise, D., Modesto, M., Blasioli, S., Braschi, I., Mattarelli, P., 2020: Exploring the animal waste resistome: The spread of antimicrobial resistance genes through the use of livestock manure. Front. Microbiol., 11, 1416. DOI: 10.3389/FMICB.2020.01416/FULL.Search in Google Scholar

9. Chopra, I., Roberts, M., 2001: Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 65, 232–260. DOI: 10.1128/MMBR.65.2.232-260.2001.Search in Google Scholar

10. Chowdhury, S., Ghosh, S., Aleem, M. A., Parveen, S., Islam, M. A., Rashid, M. M., et al., 2021: Antibiotic usage and resistance in food animal production: What have we learned from Bangladesh? Antibiotics, 10, 9, 10332. DOI: 10.3390/antibiotics10091032.Search in Google Scholar

11. Collignon, P. J., McEwen, S. A., 2019: One health — its importance in helping to better control antimicrobial resistance. Trop. Med. Inf. Dis., 4, 1, 22. DOI: 10.3390/tropicalmed4010022.Search in Google Scholar

12. Ekumankama, O., Ezeoha, A., Uche, C., 2020: The role of multinational corporations in local dairy value chain development: Case of Friesland Campina WAMCO (FCW) in Nigeria. Int. Food Agribus. Manag. Rev., 23, 55–69. DOI: 10.22434/IFAMR2018.0108.Search in Google Scholar

13. Falowo, A. B., Akimoladun, O. F., 2019: Veterinary drug residues in meat and meat products: Occurrence, detection and implications. Vet. Med. Pharmaceut., 3, 194.Search in Google Scholar

14. Fernandes, V., Cunha, E., Nunes, T., Silva, E., Tavares, L., Mateus, L., Oliveira, M., 2022: Antimicrobial resistance of clinical and commensal Escherichia coli canine isolates: Profile characterization and comparison of antimicrobial susceptibility results according to different guidelines. Vet. Sci., 9, 6, 284. DOI: 10.3390/vetsci9060284.Search in Google Scholar

15. Food and Agriculture Organization (FAO), 2017: Nigeria Agriculture at a Glance. Available at https://www.fao.org/nigeria/fao-in-nigeria/nigeria-at-a-glance/en/. Accessed 15th January, 2023.Search in Google Scholar

16. Gbarakoro, S. L., Orubite, K. O., Nyone, L., 2021: Characterization of bacteria isolates on surface of corroded aluminium coupon. J. Mat. Sci. Res. Rev., 8, 4, 185–192. DOI: 10.56201/ijccp.v8.no1.2022.pg19.27.Search in Google Scholar

17. Higgins, J. A., Jenkins, M. C., Shelton, D. R., Fayer, R., Karns, J. S., 2001: Rapid extraction of DNA from Escherichia coli and Cryptosporidium parvum for use in PCR. Appl. Environ. Microb., 67, 11, 5321–5324. DOI: 10.1128/AEM.67.11.5321-5324.2001.Search in Google Scholar

18. Jack, A. A., Adegbeye, M. J., Reddy, P. R. K., Elghandour, M. M., Salem, A. Z. M., Adewumi, M. K., 2022: Ruminant productivity among smallholders in a changing climate: Adaptation strategies. In Handbook of Climate Change Mitigation and Adaptation. Cham, Springer Int. Publ., 3047–3086.Search in Google Scholar

19. Kadlec, K., von Czapiewski, E., Kaspar, H., Wallmann, J., Michael, G. B., Steinacker, U., Schwarz, S., 2011: Molecular basis of sulfonamide and trimethoprim resistance in fish-pathogenic Aeromonas isolates. Appl. Environ. Microbiol., 77, 7147–7150. DOI: 10.1128/AEM.00560-11.Search in Google Scholar

20. Li, Q., Chang, W., Zhang, H., Hu, D., Wang, X., 2019: The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from waste-water treatment plants. Front. Microbiol., 10, 633. DOI: 10.3389/FMICB.2019.00633/FULL.Search in Google Scholar

21. Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L., 2021: Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health, 3, 1, 32–38. DOI: 10.1016/j.bsheal.2020.09.004.Search in Google Scholar

22. Manafi, M., 2000: New developments in chromogenic and fluorogenic culture media. Int. J. Food Microbiol., 60, 2–3, 205–218. DOI: 10.1016/S0168-1605(00)00312-3.Search in Google Scholar

23. Mshana, S., Sindato, C., Matee, M., Leonard, E. G. M., 2021: Antimicrobial use and resistance in agriculture and food production systems in Africa: A systematic review. Antibiotics, 10, 8, 976. DOI: 10.3390/antibiotics10080976.Search in Google Scholar

24. Ng, L. K., Martin, I., Alfa, M., Mulvey, M., 2001: Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes, 15, 4, 209–215. DOI: 10.1006/mcpr.2001.0363.Search in Google Scholar

25. Oyedeji, A. B., Green, E., Jeff-Agboola, Y. A., Olanbiwoninu, A. A., Areo, E., Martins, I., et al., 2023: Presence of pathogenic microorganisms in fermented foods. In Indigenous Fermented Foods for the Tropics. Academic Press, 519–537. DOI: 10.1016/B978-0-323-98341-9.00037-2.Search in Google Scholar

26. Roberts, M. C., 2005: Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett., 245, 2, 195–203.Search in Google Scholar

27. Sheykhsaran, E., Baghi, H. B., Barhaghi, M. H. S., Ghotassiou, R.: An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol., 30, 69–75. DOI: 10.1097/MRM.0000000000000154.Search in Google Scholar

28. Vercelli, C., Gambino, G., Amadori, M., Re, G., 2022: Implications of veterinary medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet. Anim. Sci., 16, 100249. DOI: 10.1016/j.vas.2022.100249.Search in Google Scholar

29. Virto, M., Santamarina-García, G., Amores, G., Hernández, I., 2022: Antibiotics in dairy production: Where is the problem? Dairy, 3, 541–564. DOI: 10.3390/DAIRY3030039.Search in Google Scholar

30. Worldometers, 2019: Nigeria population. In World Population Prospects: The 2019 Revision. Available at https://www.worldometers.info/world-population/nigeria-population/.Search in Google Scholar

31. Zainab, S. M., Junaid, M., Xu, N., Malik, R. N., 2020: Antibiotics and antibiotic-resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res., 187, 116455. DOI: 10.1016/j.watres.2020.116455.Search in Google Scholar

32. Zhang, J., Wang, J., Jin, J., Li, X., Zhang, H., Shi, X., Zhao, Ch., 2022: Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res. Int., 162 (Pt A), 111969. DOI: 10.1016/j.foodres.2022.111969.Search in Google Scholar

eISSN:
2453-7837
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine