Cite

1. Abbott, A., 2006: Lyme disease: Uphill struggle. Nature, 439, 524–525. DOI: 10.1016/c2016-0-01430-4.10.1016/C2016-0-01430-4 Search in Google Scholar

2. Aguero-Rosenfeld, M., Wang, G., Schwartz, I., Wormser, G., 2005: Diagnosis of Lyme Borreliosis. Clin. Microbiol. Rev., 18, 484–509. DOI: 10.1128/CMR.18.3.484-509.2005.10.1128/CMR.18.3.484-509.2005119597016020686 Search in Google Scholar

3. Anderson, C., Brissette, C. A., 2021: The brilliance of Borrelia: Mechanisms of host immune evasion by Lyme disease-causing spirochetes. Pathogens, 10, 1–17. DOI: 10. 3390/pathogens10030281.10.3390/pathogens10030281800105233801255 Search in Google Scholar

4. Appel, M. J. G., Allan, S., Jacobson, R. H., Lauderdale, T. L., Chang, Y. F., Shin, S. J., et al., 1993: Experimental lyme disease in dogs produces arthritis and persistent infection. J. Infect. Dis., 167, 651–654. DOI: 10.1093/infdis/167.3.651.10.1093/infdis/167.3.6518440936 Search in Google Scholar

5. Barbour, A. G., 2018: Borreliaceae. In Whitman, W. B., et al.: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley and Sons, Inc., Hoboken, NJ, 1–9. Search in Google Scholar

6. Barbour, A. G., Gupta, R. S., 2021: The family Borreliaceae (Spirochaetales), a diverse group in two genera of tick-borne spirochetes of mammals, birds, and reptiles. J. Med. Entomol., 58, 1513–1524. DOI: 10.1093/jme/tjab055.10.1093/jme/tjab05533903910 Search in Google Scholar

7. Barth, C., Straubinger, R. K., Krupka, I., Müller, E., Sauter-Louis, C., Hartmann, K., 2014: Comparison of different diagnostic assays for the detection of Borrelia burgdorferi-specific antibodies in dogs. Vet. Clin. Pathol., 43, 496–504. DOI: 10.1111/vcp.12213.10.1111/vcp.1221325366257 Search in Google Scholar

8. Bhide, M., Trávniček, M., Čurlík, J., Štefančíková, A., 2004: The importance of dogs in eco-epidemiology of Lyme borreliosis: A review. Vet. Med., 49, 135–142. DOI: 10.17221/5687-VETMED.10.17221/5687-VETMED Search in Google Scholar

9. Bjurman, N. K., Bradet, G., Lloyd, V. K., 2016: Lyme disease risk in dogs in New Brunswick. Can. Vet. J., 57, 981–984. Search in Google Scholar

10. Branda, J. A., Body, B. A., Boyle, J., Branson, B. M., Dattwyler, R. J., Fikrig, E., et al., 2018: Advances in serodiagnostic testing for Lyme disease are at hand. Clin. Infect. Dis., 66, 1133–1139. DOI: 10.1093/cid/cix943.10.1093/cid/cix943601907529228208 Search in Google Scholar

11. Bruckbauer, H. R., Preac-Mursic, V., Fuchs, R., Wilske, B., 1992: Cross-reactive proteins of Borrelia burgdorferi. Eur. J. Clin. Microbiol. Infect. Dis., 11, 224–232. DOI: 10. 1007/BF02098084.10.1007/BF020980841597198 Search in Google Scholar

12. Burgdorfer, W., Barbour, A., Hayes, S., Benach, J., Grunwaldt, E., Davis, J., 1982: Lyme disease – A tick-borne spirochetosis ? Science, 216, 1317–1319. DOI: 10.1126/science. 7043737.10.1126/science.7043737 Search in Google Scholar

13. Companion Animal Parasite Council, 2022: Lyme disease – prevalence map. Available at https://capcvet.org/maps/#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023. Search in Google Scholar

14. Carlos, G., dos Santos, F. P., Fröehlich, P. E., 2020: Canine metabolomics advances. Metabolomics, 16, 1–19. DOI: 10. 1007/s11306-020-1638-7. Search in Google Scholar

15. Centers for Disease Control and Prevention, 2022: Lyme disease: Data and surveillance. Available at https://capcvet.org/maps#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023. Search in Google Scholar

16. Chomel, B., 2015: Lyme disease. Rev. Sci. Tech., 34, 569–576. DOI: 10.20506/rst.34.2.2385.10.20506/rst.34.2.238526601462 Search in Google Scholar

17. Chou, J., Wünschmann, A., Hodzic, E., Borjesson, D. L., 2006: Detection of Borrelia burgdorferi DNA in tissues from dogs with presumptive Lyme borreliosis. J. Am. Vet. Med. Assoc., 229, 1260–1265. DOI: 10.2460/javma.229.8.1260.10.2460/javma.229.8.126017042727 Search in Google Scholar

18. Collares-Pereira, M., Couceiro, S., Franca, I., Kurten-bach, K., Schäfer, S. M., Vitorino, L., et al., 2004: First isolation of Borrelia lusitaniae from a human patient. J. Clin. Microbiol., 42, 1316–1318. DOI: 10.1128/JCM.42.3.1316-1318.2004.10.1128/JCM.42.3.1316-1318.200435681615004107 Search in Google Scholar

19. Comstedt, P., Schüler, W., Meinke, A., Lundberg, U., 2017: The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLOS ONE, 12, 1–13. DOI: 10.1371/journal.pone.0184357.10.1371/journal.pone.0184357558118328863166 Search in Google Scholar

20. Cutler, S. J., Rudenko, N., Golovchenko, M., Cramaro, W. J., Kirpach, J., Savic, S., et al., 2017: Diagnosing borreliosis. Vector-Borne Zoonotic Dis., 17, 2–11. DOI: 10.1089/vbz.2016.1962.10.1089/vbz.2016.196228055580 Search in Google Scholar

21. Dai, X., Shen, L., 2022: Advances and trends in omics technology development. Front. Med., 9, 1–25. DOI: 10.3389/fmed.2022.911861.10.3389/fmed.2022.911861928974235860739 Search in Google Scholar

22. Dattwyler, R. J., Arnaboldi, P. M., 2014: Editorial commentary: Comparison of Lyme disease serologic assays and Lyme specialty laboratories. Clin. Infect. Dis., 59, 1711–1713. DOI: 10.1093/cid/ciu705.10.1093/cid/ciu70525182243 Search in Google Scholar

23. Delgado, S., Cármenes, P., 1995: Seroepidemiological survey for Borrelia burgdorferi (Lyme disease) in dogs from northwestern of Spain. Eur. J. Epidemiol., 11, 321–324. DOI: 10.1007/BF01719437.10.1007/BF017194377493665 Search in Google Scholar

24. Dolange, V., Simon, S., Morel, N., 2021: Detection of Borrelia burgdorferi antigens in tissues and plasma during early infection in a mouse model. Sci. Rep., 11, 1–13. DOI: 10. 1038/s41598-021-96861-z.10.1038/s41598-021-96861-z840566034462491 Search in Google Scholar

25. Embers, M. E., Narasimhan, S., 2013: Vaccination against Lyme disease: Past, present, and future. Front. Cell. Infect. Microbiol., 3, 1–15. DOI: 10.3389/fcimb.2013.00006.10.3389/fcimb.2013.00006356983823407755 Search in Google Scholar

26. Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G., Zhang, Y., 2016: A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol., 7, 1–12. DOI: 10.3389/fmicb.2016.00743.10.3389/fmicb.2016.00743487677527242757 Search in Google Scholar

27. Feng, J., Auwaerter, P. G., Zhang, Y., 2015: Drug combinations against Borrelia burgdorferi persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLOS ONE, 10, 1–15. DOI: 10.1371/journal. pone.0117207.10.1371/journal.pone.0117207 Search in Google Scholar

28. Galluzzo, P., Grippi, F., Di Bella, S., Santangelo, F., Sciortino, S., Castiglia, A., et al., 2020: Seroprevalence of Borrelia burgdorferi in stray dogs from southern Italy. Microorganisms, 8, 1–8. DOI: 10.3390/microorganisms8111688.10.3390/microorganisms8111688769207233142966 Search in Google Scholar

29. Gatellet, M., Vanderheyden, S., Abee, M., Adaszek, Ł., Varloud, M., 2019: A Suspected case of Lyme borreliosis in a dog from Belgium. Case Reports Vet. Med., 2019, 1–3. DOI: 10.1155/2019/3973901.10.1155/2019/3973901645886131049243 Search in Google Scholar

30. Gerber, B., Haug, K., Eichenberger, S., Reusch, C. E., Wittenbrink, M. M., 2009: Follow-up of Bernese Mountain dogs and other dogs with serologically diagnosed Borrelia burgdorferi infection: What happens to seropositive animals ? BMC Vet. Res., 5, 1–8. DOI: 10.1186/1746-6148-5-18.10.1186/1746-6148-5-18269714619426490 Search in Google Scholar

31. Gettings, J. R., Lopez, J. E., Krishnavahjala, A., Armstrong, B. A., Thompson, A. T., Yabsley, M. J., 2019: Antibodies to Borrelia turicatae in experimentally infected dogs cross-react with Borrelia burgdorferi serologic assays. J. Clin. Microbiol., 57. DOI: 10.1128/JCM.00628-19.10.1128/JCM.00628-19671189731270181 Search in Google Scholar

32. Golovchenko, M., Vancová, M., Clark, K., Oliver, J. H., Grubhoffer, L., Rudenko, N., 2016: A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasites and Vectors, 9, 1–5. DOI: 10.1186/s13071-016-1353-4.10.1186/s13071-016-1353-4474311426846867 Search in Google Scholar

33. Goossens, H. A. T., Van den Bogaard, A. E., Nohlmans, M. K. E., 2001: Dogs as sentinels for human Lyme borreliosis in the Netherlands. J. Clin. Microbiol., 39, 844–848. DOI: 10.1128/JCM.39.3.844-848.2001.10.1128/JCM.39.3.844-848.20018783911230393 Search in Google Scholar

34. Guerra, M. A., Walker, E. D., Kitron, U., 2001: Canine surveillance system for Lyme borreliosis in Wisconsin and Northern Illinois: Geographic distribution and risk factor analysis. Am. J. Trop. Med. Hyg., 65, 546–552. DOI: 10.4269/ajtmh.2001.65.546.10.4269/ajtmh.2001.65.54611716112 Search in Google Scholar

35. Gupta, R. S., 2019: Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos’ et al. “The genus Borrelia reloaded” (PLOS ONE, 13,12, E0208432). PLOS ONE, 14, 1–22. DOI: 10.1371/journal.pone.0221397.10.1371/journal.pone.0221397671153631454394 Search in Google Scholar

36. Hovius, K. E., Stark, L. A. M., Bleumink-Pluym, N. M. C., van de Pol, I., Verbeek-de Kruif, N., Rijpkema, S. G. T., et al., 1999: Presence and distribution of Borrelia burgdorferi sensu lato species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet. Q., 21, 54–58. DOI: 10.1080/01652176.1999.9694992.10.1080/01652176.1999.969499210321014 Search in Google Scholar

37. Hoxmeier, J. C., Fleshman, A. C., Broeckling, C. D., Prenni, J. E., Dolan, M. C., Gage, K. L., et al., 2017: Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci. Rep., 7, 1–11. DOI: 10.1038/srep44394.10.1038/srep44394534738628287618 Search in Google Scholar

38. Hutton, T., Goldstein, R. E., Njaa, B. L., Atwater, D. Z., Chang, Y. F., Simpson, K. W., 2008: Search for Borrelia burgdorferi in kidneys of dogs with suspected “Lyme nephritis”. J. Vet. Intern. Med., 22, 860–865. DOI: 10.1111/j.1939-1676.2008.0131.x.10.1111/j.1939-1676.2008.0131.x18564223 Search in Google Scholar

39. Izac, J. R., Camire, A. C., Earnhart, C. G., Embers, M. E., Funk, R. A., Breitschwerdt, E. B., et al., 2019: Analysis of the antigenic determinants of the OspC protein of the Lyme disease spirochetes: Evidence that the C10 motif is not immunodominant or required to elicit bactericidal antibody responses. Vaccine, 37, 2401–2407. DOI: 10.1016/j.vaccine. 2019.02.007.10.1016/j.vaccine.2019.02.007 Search in Google Scholar

40. Kalish, R. A., McHugh, G., Granquist, J., Shea, B., Ruthazer, R., Steere, A. C., 2001: Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis., 33, 780–785. DOI: 10.1086/322669.10.1086/32266911512082 Search in Google Scholar

41. Kenedy, M. R., Lenhart, T. R., Akins, D. R., 2012: The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol. Med. Microbiol., 66, 1–19. DOI: 10.1111/j.1574-695X.2012.00980.x.10.1111/j.1574-695X.2012.00980.x342438122540535 Search in Google Scholar

42. Kilpatrick, A. M., Dobson, A. D. M., Levi, T., Salkeld, D. J., Swei, A., Ginsberg, H. S., et al., 2017: Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B Biol. Sci., 372, 1–15. DOI: 10.1098/rstb.2016.0117.10.1098/rstb.2016.0117541386928438910 Search in Google Scholar

43. Krämer, F., Hüsken, R., Krüdewagen, E. M., Deuster, K., Blagburn, B., Straubinger, R. K., et al., 2020: Prevention of transmission of Borrelia burgdorferi sensu lato and Ana-plasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10 % + flumethrin 4.5 %). Parasitol. Res., 119, 299–315. DOI: 10.1007/s00436-019-06394-8.10.1007/s00436-019-06394-8694203431734862 Search in Google Scholar

44. Krause, P. J., Foley, D. T., Burke, G. S., Christianson, D., Closter, L., Spielman, A., et al., 2006: Reinfection and relapse in early Lyme disease. Am. J. Trop. Med. Hyg., 75, 1090–1094. DOI: 10.4269/ajtmh.2006.75.1090.10.4269/ajtmh.2006.75.1090 Search in Google Scholar

45. Krupka, I., Straubinger, R. K., 2010: Lyme borreliosis in dogs and cats: Background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet. Clin. North Am. Small Anim. Pract., 40, 1103–1119. DOI: 10.1016/j.cvsm.2010.07.011.10.1016/j.cvsm.2010.07.01120933139 Search in Google Scholar

46. Kybicová, K., Lukavská, A., Balátová, P., 2018: Lyme borreliosis – cultivation of Borrelia burgdorferi sensu lato (In Czech). Zprávy Cent. Epidemiol. Mikrobiol. (SZÚ Prague), 27, 113–115. Search in Google Scholar

47. Lebech, A. M., Clemmensen, O., Hansen, K., 1995: Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J. Clin. Microbiol., 33, 2328–2333. DOI: 10.1128/jcm.33.9.2328-2333.1995.10.1128/jcm.33.9.2328-2333.19952284047494022 Search in Google Scholar

48. Liang, F. T., Jacobson, R. H., Straubinger, R. K., Groot-ers, A., Philipp, M. T., 2000: Characterization of a Borrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J. Clin. Microbiol., 38, 4160–4166. DOI: 10.1128/jcm. 38.11.4160-4166.2000.10.1128/JCM.38.11.4160-4166.2000 Search in Google Scholar

49. Liang, F. T., Philipp, M. T., 1999: Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect. Immun., 67, 6702–6706. DOI: 10.1128/iai.67.12.6702-6706.1999.10.1128/IAI.67.12.6702-6706.19999708810569796 Search in Google Scholar

50. Little, S. E., Heise, S. R., Blagburn, B. L., Callister, S. M., Mead, P. S., 2010: Lyme borreliosis in dogs and humans in the USA. Trends Parasitol., 26, 213–218. DOI: 10.1016/j.pt. 2010.01.006.10.1016/j.pt.2010.01.006 Search in Google Scholar

51. Littman, M. P., Gerber, B., Goldstein, R. E., Labato, M. A., Lappin, M. R., Moore, G. E., 2018: ACVIM consensus update on Lyme borreliosis in dogs and cats. J. Vet. Intern. Med., 32, 887–903. DOI: 10.1111/jvim.15085.10.1111/jvim.15085598028429566442 Search in Google Scholar

52. Littman, M. P., Goldstein, R. E., Labato, M., Lappin, M. R., Moore, G. E., 2006: ACVIM small animal consensus statement on Lyme disease in dogs: Diagnosis, treatment, and prevention. J. Vet. Intern. Med., 20, 422–434. DOI: 10.1111/j. 1939-1676.2006.tb02880.x.10.1111/j.1939-1676.2006.tb02880.x Search in Google Scholar

53. Liu, J., Drexel, J., Andrews, B., Eberts, M., Breitschwerdt, E., Chandrashekar, R., 2018: Comparative evaluation of 2 in-clinic assays for vector-borne disease testing in dogs. Top. Companion Anim. Med., 33, 114–118. DOI: 10.1053/j. tcam.2018.09.003.10.1053/j.tcam.2018.09.003 Search in Google Scholar

54. Liveris, D., Schwartz, I., McKenna, D., Nowakowski, J., Nadelman, R., DeMarco, J., et al., 2012: Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn. Microbiol. Infect. Dis., 73, 243–245. DOI: 10.1016/j.diagmicrobio.2012.03.026.10.1016/j.diagmicrobio.2012.03.026337784322571973 Search in Google Scholar

55. Lohr, B., Fingerle, V., Norris, D. E., Hunfeld, K. P., 2018: Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Crit. Rev. Clin. Lab. Sci., 55, 219–245. DOI: 10.1080/10408363.2018.1450353.10.1080/10408363.2018.145035329606016 Search in Google Scholar

56. Malloy, D. C., Nauman, R. K., Paxton, H., 1990: Detection of Borrelia burgdorferi using the polymerase chain reaction. J. Clin. Microbiol., 28, 1089–1093. DOI: 10.1128/jcm.28.6. 1089-1093.1990.10.1128/jcm.28.6.1089-1093.1990 Search in Google Scholar

57. Margos, G., Lane, R. S., Fedorova, N., Koloczek, J., Pies-man, J., Hojgaard, A., et al., 2016: Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int. J. Syst. Evol. Microbiol., 66, 1447–1452. DOI: 10.1099/ijsem.0.000897.10.1099/ijsem.0.000897580175926813420 Search in Google Scholar

58. Margos, G., Fedorova, N., Becker, N. S., Kleinjan, J. E., Marosevic, D., Krebs, S., et al., 2020: Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int. J. Syst. Evol. Microbiol., 70, 849–856. DOI: 10. 1099/ijsem.0.003833.10.1099/ijsem.0.00383331793856 Search in Google Scholar

59. Margos, G., Sing, A., Fingerle, V., 2017: Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection, 45, 567–569. DOI: 10.1007/s15010-017-1032-1.10.1007/s15010-017-1032-128573415 Search in Google Scholar

60. Margos, G., Castillo-Ramirez, S., Cutler, S., Dessau, R. B., Eikeland, R., Estrada-Peña, A., et al., 2020: Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int. J. Syst. Evol. Microbiol., 70, 3577–3581. DOI: 10.1099/ijsem.0.004149.10.1099/ijsem.0.00414932320380 Search in Google Scholar

61. Merino, F. J., Serrano, J. L., Saz, J. V., Nebreda, T., Gegundez, M., Beltran, M., 2000: Epidemiological characteristics of dogs with Lyme borreliosis in the province of Soria (Spain). Eur. J. Epidemiol., 16, 97–100. DOI: 10.1023/A:1007 690807637.10.1023/A:1007690807637 Search in Google Scholar

62. Minkus, G., Breuer, W., Wanke, R., Hermanns, W., Reusch, C., Leuterer, G., et al., 1994: Familial nephropathy in Bernese Mountain dogs. Vet. Pathol., 31, 421–428. DOI: 10. 1177/030098589403100403.10.1177/0300985894031004037941230 Search in Google Scholar

63. Miró, G., Wright, I., Michael, H., Burton, W., Hegarty, E., Rodón, J., et al., 2022: Seropositivity of main vector-borne pathogens in dogs across Europe. Parasites and Vectors, 15, 1–13. DOI: 10.1186/s13071-022-05316-5.10.1186/s13071-022-05316-5916929535668469 Search in Google Scholar

64. Molins, C. R., Ashton, L. V., Wormser, G. P., Hess, A. M., Delorey, M. J., Mahapatra, S., et al., 2015: Development of a metabolic biosignature for detection of early Lyme disease. Clin. Infect. Dis., 60, 1767–1775. DOI: 10.1093/cid/civ185.10.1093/cid/civ185481080825761869 Search in Google Scholar

65. Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., Raftery, D., 2008: Metabolomics-based methods for early disease diagnostics: A review. Expert Rev. Mol. Diagn., 8, 617–633. DOI: 10.1586/147371 59.8.5.617.10.1586/14737159.8.5.617 Search in Google Scholar

66. Norris, S. J., 2006: Antigenic variation with a twist – The Borrelia story. Mol. Microbiol., 60, 1319–1322. DOI: 10.11 11/j.1365-2958.2006.05204.x.10.1111/j.1365-2958.2006.05204.x16796669 Search in Google Scholar

67. Pangrácová, L., Derdáková, M., Pekárik, L., Hviščová, I., Víchová, B., Stanko, M., et al., 2013: Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasites and Vectors, 6, 1–8. DOI: 10.1186/1756-3305-6-238.10.1186/1756-3305-6-238375176223952975 Search in Google Scholar

68. Pegalajar-Jurado, A., Fitzgerald, B. L., Islam, M. N., Belisle, J. T., Wormser, G. P., Waller, K. S., et al., 2018: Identification of urine metabolites as biomarkers of early Lyme disease. Sci. Rep., 8, 1–12. DOI: 10.1038/s41598-018-29713-y.10.1038/s41598-018-29713-y609393030111850 Search in Google Scholar

69. Preyß-Jägeler, C., Müller, E., Straubinger, R. K., Hart-mann, K., 2016: Prävalenz von Antikörpern gegen Borrelia burgdorferi, Anaplasma phagocytophilum und bestimmte Leptospira-interrogans-Serovare bei Berner Sennenhunden. Tierarztl. Prax. Ausgabe K: Kleintiere – Heimtiere, 44, 77–85. DOI: 10.15654/TPK-140962.10.15654/TPK-14096227004451 Search in Google Scholar

70. Pritt, B. S., Respicio-Kingry, L. B., Sloan, L. M., Schriefer, M. E., Replogle, A. J., Bjork, J., et al., 2016: Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int. J. Syst. Evol. Microbiol., 66, 4878–4880. DOI: 10.1099/ijsem.0.001445.10.1099/ijsem.0.001445521495727558626 Search in Google Scholar

71. Pritt, B. S., Mead, P. S., Johnson, D. K. H., Neitzel, D. F., Respicio-Kingry, L. B., Davis, J. P., et al., 2016: Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: A descriptive study. Lancet Infect. Dis., 16, 556–564. DOI: 10.1016/S 1473-3099(15)00464-8.10.1016/S1473-3099(15)00464-8 Search in Google Scholar

72. Radolf, J. D., Caimano, M. J., Stevenson, B., Hu, L. T., 2012: Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol., 10, 87–99. DOI: 10.1038/nrmicro2714.10.1038/nrmicro2714331346222230951 Search in Google Scholar

73. Reif, K. E., 2020: Lyme disease in dogs: Signs and prevention. Today’s Vet. Pract., 10, 24–28. Available at https://todaysveterinarypractice.com/. Accessed January 31, 2023. Search in Google Scholar

74. Rosà, R., Andreo, V., Tagliapietra, V., Baráková, I., Arnoldi, D., Hauffe, H. C., et al., 2018: Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int. J. Environ. Res. Public Health, 15, 1–15. DOI: 10.3390/ijerph15040732.10.3390/ijerph15040732592377429649132 Search in Google Scholar

75. Rudenko, N., Golovchenko, M., Kybicova, K., Vancova, M., 2019: Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites and Vectors, 12, 1–10. DOI: 10.1186/s13071-019-3495-7.10.1186/s13071-019-3495-7652136431097026 Search in Google Scholar

76. Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., et al., 2011: Evaluation of in vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug Resist., 4, 97–113. DOI: 10.2147/IDR.S19201.10.2147/IDR.S19201313287121753890 Search in Google Scholar

77. Schwartz, A. M., Hinckley, A. F., Mead, P. S., Hook, S. A., Kugeler, K. J., 2017: Surveillance for Lyme disease – United States, 2008–2015. MMWR Surveill. Summ., 66, 1–12. DOI: 10.15585/mmwr.ss6622a1.10.15585/mmwr.ss6622a1582962829120995 Search in Google Scholar

78. Schwarzová, K., Ferko, M., Farkaš, P. (Eds.), 2019: Arbobactera, Leptospira, Kapnocytophages, Streptobacili – Bacteria with Pathogenic Potential Transmissible to Man (In Slovak). OZ Preveda, Banská Bystrica, Slovakia, 54 pp. Search in Google Scholar

79. Smith, A. J., Oertle, J., Prato, D., 2014: Chronic Lyme disease: Persistent clinical symptoms related to immune evasion, antibiotic resistance and various defense mechanisms of Borrelia burgdorferi. Open J. Med. Microbiol., 4, 252–260. DOI: 10.4236/ojmm.2014.44029.10.4236/ojmm.2014.44029 Search in Google Scholar

80. Spencer, J. A., Butler, J. M., Stafford, K. C., Pough, M. B., Levy, S. A., Bledsoe, D. L., et al., 2003: Evaluation of permethrin and imidacloprid for prevention of Borrelia burgdorferi transmission from blacklegged ticks (Ixodes scapularis) to Borrelia burgdorferi-free dogs. Parasitol. Res., 90, 106–107. DOI: 10.1007/s00436-003-0904-8.10.1007/s00436-003-0904-812928869 Search in Google Scholar

81. Sperling, J. L. H., Sperling, F. A. H., 2009: Lyme borreliosis in Canada: Biological diversity and diagnostic complexity from an entomological perspective. Can. Entomol., 141, 521–549. DOI: 10.4039/n08-CPA04.10.4039/n08-CPA04 Search in Google Scholar

82. Spickler, A. R., 2020: Lyme Disease. Available at https://www.cfsph.iastate.edu/Factsheets/pdfs/lyme_disease.pdf. Updated January 2020. Accessed January 31, 2023. Search in Google Scholar

83. Stanek, G., Fingerle, V., Hunfeld, K. P., Jaulhac, B., Kaiser, R., Krause, A., et al., 2011: Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect., 17, 69–79. DOI: 10.1111/j.1469-0691.2010.03175.x.10.1111/j.1469-0691.2010.03175.x20132258 Search in Google Scholar

84. Stanek, G., Wormser, G. P., Gray, J., Strle, F., 2012: Lyme borreliosis. Lancet, 379, 461–473. DOI: 10.1016/S0140-67 36(11)60103-7.10.1016/S0140-6736(11)60103-7 Search in Google Scholar

85. Stanko, M., Derdáková, M., Špitalská, E., Kazimírová, M., 2022: Ticks and their epidemiological role in Slovakia: From the past till present. Biologia, 77, 1575–1610. DOI: 10. 1007/s11756-021-00845-3.10.1007/s11756-021-00845-3844648434548672 Search in Google Scholar

86. Steere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Li, X., et al., 2016: Lyme borreliosis. Nat. Rev. Dis. Prim., 2, 1–18. DOI: 10.1038/nrdp.2016.90.10.1038/nrdp.2016.90553953927976670 Search in Google Scholar

87. Štefančíková, A., Derdáková, M., Škardová, I., Szestáková, E., Čisláková, L., Kováčová, D., et al., 2008: Some epidemiological and epizootiological aspects of Lyme borreliosis in Slovakia with the emphasis on the problems of sero-logical diagnostics. Biologia, 63, 1135–1142. DOI: 10.2478/s11756-008-0177-x.10.2478/s11756-008-0177-x Search in Google Scholar

88. Stillman, B. A., Thatcher, B., Beall, M. J., Lappin, M., O’Connor, T. P., Chandrashekar, R., 2019: Borrelia burgdorferi antibody test results in dogs administered 4 different vaccines. Top. Companion Anim. Med., 37, 1–4. DOI: 10.10 16/j.tcam.2019.100358.10.1016/j.tcam.2019.10035831837754 Search in Google Scholar

89. Straubinger, R. K., Summers, B. A., Chang, Y. F., Appel, M. J. G., 1997: Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol., 35, 111–116. DOI: 10.1128/jcm.35.1.111-116.1997.10.1128/jcm.35.1.111-116.19972295218968890 Search in Google Scholar

90. Straubinger, R. K., Straubinger, A. F., Summers, B. A., Jacobson, R. H., 2000: Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: An experimental study. J. Infect. Dis., 181, 1069–1081. DOI: 10.1086/315340.10.1086/31534010720533 Search in Google Scholar

91. Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L., Rego, R. O. M., 2017: Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol., 83, 1–16. DOI: 10.1128/AEM.00609-17.10.1128/AEM.00609-17551467728550059 Search in Google Scholar

92. Tilly, K., Bestor, A., Rosa, P. A., 2013: Lipoprotein succession in Borrelia burgdorferi: Similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol. Microbiol., 89, 216–227. DOI: 10.1111/mmi.12271.10.1111/mmi.12271371363123692497 Search in Google Scholar

93. Töpfer, K. H., Straubinger, R. K., 2007: Characterization of the humoral immune response in dogs after vaccination against the Lyme borreliosis agent. A study with five commercial vaccines using two different vaccination schedules. Vaccine, 25, 314–326. DOI: 10.1016/j.vaccine.2006. 07.031.10.1016/j.vaccine.2006.07.031 Search in Google Scholar

94. Tran, H., Mcconville, M., Loukopoulos, P., 2020: Metabolomics in the study of spontaneous animal diseases. J. Vet. Diagnostic Investig., 32, 635–647. DOI: 10.1177/10406387209 48505.10.1177/1040638720948505 Search in Google Scholar

95. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Kostecká, Z., 2018: New developed UHPLC method for selected urine metabolites. J. Chromatogr. Sep. Tech., 9, 1–8. DOI: 10. 4172/2157-7064.1000404. Search in Google Scholar

96. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Titková, R., Kostecká, Z., 2020: Specific urinary metabolites in canine mammary gland tumours. J. Vet. Sci., 21, 1–10. DOI: 10. 4142/jvs.2020.21.e23.10.4142/jvs.2020.21.e23711356832233131 Search in Google Scholar

97. Venczel, R., Knoke, L., Pavlovic, M., Dzaferovic, E., Vaculova, T., Silaghi, C., et al., 2016: A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato. Infection, 44, 47–55. DOI: 10.1007/s15010-015-0820-8.10.1007/s15010-015-0820-826168860 Search in Google Scholar

98. Vogt, N. A., Sargeant, J. M., MacKinnon, M. C., Versluis, A. M., 2019: Efficacy of Borrelia burgdorferi vaccine in dogs in North America: A systematic review and meta-analysis. J. Vet. Intern. Med., 33, 23–36. DOI: 10.1111/jvim.15344.10.1111/jvim.15344633554130511365 Search in Google Scholar

99. Vogt, N. A., Stevens, C. P. G., 2021: Why the rationale for canine Borrelia burgdorferi vaccination is unpersuasive. Front. Vet. Sci., 8, 1–3. DOI: 10.3389/fvets.2021.719060.10.3389/fvets.2021.719060838531334458359 Search in Google Scholar

100. Vrhovec, M. G., Pantchev, N., Failing, K., Bauer, C., Travers-Martin, N., Zahner, H., 2017: Retrospective analysis of canine vector-borne diseases (CVBD) in Germany with emphasis on the endemicity and risk factors of leishmaniosis. Parasitol. Res., 116, 131–144. DOI: 10.1007/s004 36-017-5499-6.10.1007/s00436-017-5499-6 Search in Google Scholar

101. Wagner, B., Johnson, J., Garcia-Tapia, D., Honsberger, N., King, V., Strietzel, C., et al., 2015: Comparison of effectiveness of cefovecin, doxycycline, and amoxicillin for the treatment of experimentally induced early Lyme borreliosis in dogs. BMC Vet. Res., 11, 1–8. DOI: 10.1186/s12917-015-0475-9.10.1186/s12917-015-0475-9451393826205247 Search in Google Scholar

102. WHO, Regional Office for Europe, 2006: Lyme borreliosis in Europe. Available at https://www.euro.who.int/__data/assets/pdf_file/0008/246167/Fact-sheet-Lyme-borreliosis-Eng.pdf. Accessed January 31, 2023. Search in Google Scholar

103. Wormser, G. P., Schwartz, I., 2009: Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin. Microbiol. Rev., 22, 387–395. DOI: 10.1128/CMR.00004-09.10.1128/CMR.00004-09270839319597005 Search in Google Scholar

104. Zhang, J., Wei, S., Liu, L., Nagana Gowda, G. A., Bonney, P., Stewart, J., et al., 2012: NMR-based metabolomics study of canine bladder cancer. Biochim. Biophys. Acta Mol. Basis Dis., 1822, 1807–1814. DOI: 10.1016/j.bbadis.2012.08.001.10.1016/j.bbadis.2012.08.00122967815 Search in Google Scholar

eISSN:
2453-7837
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine