Cite

1. Andong, F. A., Okwuonu, E. S., Melefa, T. D., Okoye, C. O., Nkemakolam, A. O., Hinmikaiye, F. F., et al., 2021: The consequence of aqueous extract of tobacco leaves (Nicotiana tabacum L.) on feed intake, body mass, and hematological indices of male Wistar rats fed under equal environmental conditions. J. Am. Coll. Nutr., 40, 5, 429—442. DOI: 10. 1080/07315724.2020.1788471.10.1080/07315724.2020.178847132729775 Search in Google Scholar

2. Aspera-Werz, R. H., Chen, T., Ehnert, S., Zhu, S., Fröhlich, T., Nussler, A. K., 2019: Cigarette smoke induces the risk of metabolic bone diseases: transforming growth factor beta signaling impairment via dysfunctional primary cilia affects migration, proliferation, and differentiation of human mesenchymal stem cells. Int. J. Mol. Sci., 20, 12, 2915. DOI: 10.3390/ijms20122915.10.3390/ijms20122915662837331207955 Search in Google Scholar

3. Atabaki, R., Roohbakhsh, A., Moghimi, A., Mehri, S., 2020: Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int. Immunopharmaco., 86, 106720. DOI: 10.1016/j.intimp.2020.106720.10.1016/j.intimp.2020.10672032585605 Search in Google Scholar

4. Braun, M., Fromm, E. L., Gerber, A., Klingelhöfer, D., Müller, R., Groneberg, D. A., 2019: Particulate matter emissions of four types of one cigarette brand with and without additives: a laser spectrometric particulate matter analysis of secondhand smoke. BMJ Open, 9, 1, e024400. DOI: 10.1136/bmjopen-2018-024400.10.1136/bmjopen-2018-024400634063430782733 Search in Google Scholar

5. Cardoso, L. S., Estrela, F. N., Chagas, T. Q., da Silva, W. A. M., de Oliveira Costa, D. R., Pereira, I., et al., 2018: The exposure to water with cigarette residue changes the anti-predator response in female Swiss albino mice. Environ. Sci. Pollut. Res., 25, 9, 8592—8607. DOI: 10.1007/s11356-017-1150-4.10.1007/s11356-017-1150-429318484 Search in Google Scholar

6. Chírico, M. T. T., Bezerra, F. S., Guedes, M. R., Souza, A. B., Silva, F. C., Campos, G., et al., 2018: Tobacco-free cigarette smoke exposure induces anxiety and panic-related behaviours in male Wistar rats. Sci. Rep., 8, 1, 1—8. DOI: 10. 1038/s41598-018-23425-z.10.1038/s41598-018-23425-z586284629563583 Search in Google Scholar

7. Choudhary, K. M., Mishra, A., Poroikov, V. V., Goel, R. K., 2013: Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur. J. Pharmacol., 704, 1—3, 33—40. DOI: 10.1016/j.ejphar.2013.02.012.10.1016/j.ejphar.2013.02.01223461849 Search in Google Scholar

8. Hu, T., Yang, Z., Li, M. D., 2018: Pharmacological effects and regulatory mechanisms of tobacco smoking effects on food intake and weight control. J. Neuroimmune Pharmacol., 13, 4, 453—466. DOI: 10.1007/s11481-018-9800-y.10.1007/s11481-018-9800-y30054897 Search in Google Scholar

9. Lee, H. M., Kim, C. W., Hwang, K. A., Sung, J. H., Lee, J. K., Choi, K. C., 2017: Cigarette smoke impaired maturation of ovarian follicles and normal growth of uterus inner wall of female wild-type and hypertensive rats. Reprod. Toxicol., 73, 232‒240. DOI: 10.1016/j.reprotox.2017.06.187.10.1016/j.reprotox.2017.06.18728689806 Search in Google Scholar

10. Li, Q., Sun, J., Mohammadtursun, N., Wu, J., Dong, J., Li, L., 2019: Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPARγ-NF-κB signaling pathway. Food Funct., 10, 12, 7983—7994. DOI: 10.1039/C9FO02159K.10.1039/C9FO02159K Search in Google Scholar

11. Loffredo, C. A., Tang, Y., Momen, M., Makambi, K., Radwan, G. N., Aboul-Foutoh, A., 2016: PM2. 5 as a marker of exposure to tobacco smoke and other sources of particulate matter in Cairo, Egypt. Int. J. Tuberc. Lung Dis., 20, 3, 417—422. DOI: 10.5588/ijtld.15.0316.10.5588/ijtld.15.0316585419027046726 Search in Google Scholar

12. Marchiori, M. S., Oliveira, R. C., Souza, C. F., Baldissera, M. D., Ribeiro, Q. M., Wagner, R., et al., 2019: Curcumin in the diet of quail in cold stress improves performance and egg quality. Anim. Feed Sci. Technol., 254, 114—192. DOI: 10.1016/j.anifeedsci.2019.05.015.10.1016/j.anifeedsci.2019.05.015 Search in Google Scholar

13. Marslin, G., Prakash, J., Qi, S., Franklin, G., 2018: Oral delivery of curcumin polymeric nanoparticles ameliorates CCl4-induced subacute hepatotoxicity in Wistar rats. Polymers, 10, 5, 541. DOI: 10.3390/polym10050541.10.3390/polym10050541641540730966575 Search in Google Scholar

14. Onor, I. O., Stirling, D. L., Williams, S. R., Bediako, D., Borghol, A., Harris, M. B., et al., 2017: Clinical effects of cigarette smoking: epidemiologic impact and review of pharmacotherapy options. Int. J. Environ. Res. Public Health, 14, 10, 1147. DOI: 10.3390/ijerph14101147.10.3390/ijerph14101147566464828956852 Search in Google Scholar

15. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al., 2020: The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab., 40, 9, 1769—1777. DOI: 10. 1177/0271678X20943823. Search in Google Scholar

16. Rehman, A. U., Arif, M., Husnain, M. M., Alagawany, M., El-Hack, A., Mohamed, E., et al., 2019: Growth performance of broilers as influenced by different levels and sources of methionine plus cysteine. Animals, 9, 1, 1056. DOI: 10. 3390/ani9121056. Search in Google Scholar

17. Rosen, L. J., Galili, T., Kott, J., Goodman, M., Freedman, L. S., 2018: Diminishing benefit of smoking cessation medications during the first year: a meta-analysis of randomized controlled trials. Addiction, 113, 5, 805—816. DOI: 10.1111/add.14134.10.1111/add.14134594782829377409 Search in Google Scholar

18. Schwartz, A., Bellissimo, N., 2021: Nicotine and energy balance: a review examining the effect of nicotine on hormonal appetite regulation and energy expenditure. Appetite, 164, 105260. DOI: 10.1016/j.appet.2021.105260.10.1016/j.appet.2021.10526033848592 Search in Google Scholar

19. Sen, S., Peltz, C., Beard, J., Zeno, B., 2010: Recurrent carbon monoxide poisoning from cigarette smoking. Am. J. Med. Sci., 340, 5, 427—428. DOI: 10.1097/MAJ.0b013 e3181ef712d. Search in Google Scholar

20. Simitzis, P. E., Babaliaris, C., Charismiadou, M. A., Papadomichelakis, G., Goliomytis, M., Symeon, G. K., et al., 2014: Effect of hesperidin dietary supplementation on growth performance, carcass traits and meat quality of rabbits. World Rabbit Sci., 22, 2, 113—121. DOI: 10.4995/wrs. 2014.1760.10.4995/wrs Search in Google Scholar

21. Simitzis, P., Massouras, T., Goliomytis, M., Charismiadou, M., Moschou, K., Economou, C., et al., 2019: The effects of hesperidin or naringin dietary supplementation on the milk properties of dairy ewes. J. Sci. Food Agric., 99, 1, 6515—6521. DOI: 10.1002/jsfa.9931.10.1002/jsfa.993131321772 Search in Google Scholar

22. Small, E., Shah, H. P., Davenport, J. J., Geier, J. E., Yavarovich, K. R., Yamada, H., et al., 2010: Tobacco smoke exposure induces nicotine dependence in rats. Psychopharmacology, 208, 1, 143—158. DOI: 10.1007/s00213-009-1716-z.10.1007/s00213-009-1716-z358619819936715 Search in Google Scholar

23. Teague, S. V., Pinkerton, K. E., Goldsmith, M., Gebremichael, A., Chang, S., Jenkins, R. A., et al., 1994: Side-stream cigarette smoke generation and exposure system for environmental tobacco smoke studies. Inhal. Toxicol., 6, 1, 79—93. DOI: 10.3109/08958379409029697.10.3109/08958379409029697 Search in Google Scholar

24. Valenti, V. E., Taniguchi, R. Y., Lazarini, C. A., Abreu, L. C. D., Goulart, F. C., 2014: Short term exposure to cigarette smoke on general activity and anxiety. Med. Express, 1, 180—183. DOI: 10.5935/MedicalExpress.2014.04.04.10.5935/MedicalExpress.2014.04.04 Search in Google Scholar

25. Vani, G., Anbarasi, K., Shyamaladevi, C. S., 2015: Baco-side a: Role in cigarette smoking induced changes in brain. Evid. Based Complementary Altern. Med., 2015, 286137. DOI: 10.1155/2015/286137.10.1155/2015/286137456463626413118 Search in Google Scholar

26. Wang, S., He, N., Xing, H., Sun, Y., Ding, J., Liu, L., 2020: Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J. Recept. Signal Transduct. Res., 40, 4, 388—394. DOI: 10.1080/10799893. 2020.1738483. Search in Google Scholar

27. Ypsilantis, P., Politou, M., Anagnostopoulos, C., Tsigalou, C., Kambouromiti, G., Kortsaris, A., et al., 2012: Effects of cigarette smoke exposure and its cessation on body weight, food intake and circulating leptin, and ghrelin levels in the rat. Nicotine Tob. Res., 15, 1, 206—212. DOI: 10.1093/ntr/nts113.10.1093/ntr/nts11322589425 Search in Google Scholar

28. Zhai, T., Li, S., Hu, W., Li, D., Leng, S., 2018: Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients, 10, 7, 813. DOI: 10.3390/nu10070813.10.3390/nu10070813607311729941777 Search in Google Scholar

29. Zwozdziak, A., Sówka, I., Willak-Janc, E., Zwozdziak, J., Kwiecińska, K., Balińska-Miśkiewicz, W., 2016: Influence of PM 1 and PM 2.5 on lung function parameters in healthy schoolchildren—a panel study. Environ. Sci. Pollut. Res., 23, 23, 23892—23901. DOI: 10.1007/s11356-016-7605-1.10.1007/s11356-016-7605-1511058727628915 Search in Google Scholar

eISSN:
2453-7837
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine