Investigating the Effects of PU-Based Back-Coating with Boric Acid and Titanium Dioxide Additives on Flame Retardancy Levels and Comfort Properties of 100% Cotton Denim Fabric
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Adamu BF. Permeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and Polyester. J Inst Eng India Ser E 2022;103:253–8. https://doi.org/10.1007/s40034-022-00249-1.AdamuBFPermeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and PolyesterJ Inst Eng India Ser E20221032538https://doi.org/10.1007/s40034-022-00249-1.Search in Google Scholar
Becenen N, Eyi G. Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2. J Text Inst 2021;112:1080–92. https://doi.org/10.1080/00405000.2020.1800974.BecenenNEyiGInvestigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2J Text Inst2021112108092https://doi.org/10.1080/00405000.2020.1800974.Search in Google Scholar
Periyasamy AP, Militky J. Denim and consumers’ phase of life cycle. In: Muthu SS, editor. Sustain. Denim, Sawston: Woodhead; 2017, p. 257–82. https://doi.org/10.1016/B978-0-08-102043-2.00010-1.PeriyasamyAPMilitkyJDenim and consumers’ phase of life cycleIn:MuthuSSeditor.SustainDenim, SawstonWoodhead201725782https://doi.org/10.1016/B978-0-08-102043-2.00010-1.Search in Google Scholar
Becenen N, Erdoğan S. Chitosan and nano-TiO2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charring. J Ind Text 2022;51:1252S–1278S. https://doi.org/10.1177/15280837221099632.BecenenNErdoğanSChitosan and nano-TiO2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charringJ Ind Text2022511252S1278Shttps://doi.org/10.1177/15280837221099632.Search in Google Scholar
Talebi S, Montazer M. Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles. Cellulose 2020;27:6643–61. https://doi.org/10.1007/s10570-020-03195-6.TalebiSMontazerMDenim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticlesCellulose202027664361https://doi.org/10.1007/s10570-020-03195-6.Search in Google Scholar
Liu Y, Wang X, Qi K, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18:3454–60. https://doi.org/10.1039/b801849a.LiuYWangXQiKXinJHFunctionalization of cotton with carbon nanotubesJ Mater Chem200818345460https://doi.org/10.1039/b801849a.Search in Google Scholar
Javed A, Wiener J, Saskova J, Müllerová J. Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics. Polymers 2022;14:3414. https://doi.org/10.3390/polym14163414.JavedAWienerJSaskovaJMüllerováJZinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton FabricsPolymers2022143414https://doi.org/10.3390/polym14163414.Search in Google Scholar
Ling C, Guo L, Wang Z. A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 2023;194:116264. https://doi.org/10.1016/j.indcrop.2023.116264.LingCGuoLWangZA review on the state of flame-retardant cotton fabric: Mechanisms and applicationsInd Crops Prod2023194116264https://doi.org/10.1016/j.indcrop.2023.116264.Search in Google Scholar
Zhang K, Zong L, Tan Y, Ji Q, Yun W, Shi R, et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 2016;136:121–7. https://doi.org/10.1016/j.carbpol.2015.09.026.ZhangKZongLTanYJiQYunWShiRImprove the flame retardancy of cellulose fibers by grafting zinc ionCarbohydr Polym20161361217https://doi.org/10.1016/j.carbpol.2015.09.026.Search in Google Scholar
Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Vieillard J, et al. Functional Cotton Fabric: Enhancement in Flame Retardancy and Thermal Stability. Int J Nanoparticles Nanotechnol 2020;6:1–13. https://doi.org/10.35840/2631-5084/5537.AbedABouaziziNGiraudSEl AchariACampagneCVieillardJFunctional Cotton Fabric: Enhancement in Flame Retardancy and Thermal StabilityInt J Nanoparticles Nanotechnol20206113https://doi.org/10.35840/2631-5084/5537.Search in Google Scholar
Attia N, Ahmed H, Yehia D, Hassan M, Zaddin Y. Novel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservation. J Ind Text 2017;46:1379–92. https://doi.org/10.1177/1528083715619957.AttiaNAhmedHYehiaDHassanMZaddinYNovel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservationJ Ind Text201746137992https://doi.org/10.1177/1528083715619957.Search in Google Scholar
Wang Q, Undrell JP, Gao Y, Cai G, Buffet J-C, Wilkie CA, et al. Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites. Macromolecules 2013;46:6145–50. https://doi.org/10.1021/ma401133s.WangQUndrellJPGaoYCaiGBuffetJ-CWilkieCASynthesis of Flame-Retardant Polypropylene/LDH-Borate NanocompositesMacromolecules201346614550https://doi.org/10.1021/ma401133s.Search in Google Scholar
Zhou C, Zhou S, You F, Wang Z, Li D, Li G, et al. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J Polym Res 2023;30:437. https://doi.org/10.1007/s10965-023-03812-5.ZhouCZhouSYouFWangZLiDLiGEffectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide solsJ Polym Res202330437https://doi.org/10.1007/s10965-023-03812-5.Search in Google Scholar
Akarslan F. Investigation on Fire Retardancy Properties of Boric Acid Doped Textile Materials. Acta Phys Pol A 2015;128:B-403–B-405. https://doi.org/10.12693/APhysPolA.128.B-403.AkarslanFInvestigation on Fire Retardancy Properties of Boric Acid Doped Textile MaterialsActa Phys Pol A2015128B-403B-405https://doi.org/10.12693/APhysPolA.128.B-403.Search in Google Scholar
Qiu X, Li Z, Li X, Zhang Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem Eng J 2018;334:108–22. https://doi.org/10.1016/j.cej.2017.09.194.QiuXLiZLiXZhangZFlame retardant coatings prepared using layer by layer assembly: A reviewChem Eng J201833410822https://doi.org/10.1016/j.cej.2017.09.194.Search in Google Scholar
Duan H, Li J, Gu J, Lu L, Qi D. Onepot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomers. React Funct Polym 2022;181:105438. https://doi.org/10.1016/j.reactfunctpolym.2022.105438.DuanHLiJGuJLuLQiDOnepot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomersReact Funct Polym2022181105438https://doi.org/10.1016/j.reactfunctpolym.2022.105438.Search in Google Scholar
Ayesh M, Horrocks AR, Kandola BK. The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton. Molecules 2022;27:8737. https://doi.org/10.3390/molecules27248737.AyeshMHorrocksARKandolaBKThe Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to CottonMolecules2022278737https://doi.org/10.3390/molecules27248737.Search in Google Scholar
Bentis A, Boukhriss A, Gmouh S. Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J Sol-Gel Sci Technol 2020;94:719–30. https://doi.org/10.1007/s10971-020-05224-z.BentisABoukhrissAGmouhSFlame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel methodJ Sol-Gel Sci Technol20209471930https://doi.org/10.1007/s10971-020-05224-z.Search in Google Scholar
Zope IS, Foo S, Seah DGJ, Akunuri AT, Dasari A. Development and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton Fabrics. ACS Appl Mater Interfaces 2017;9:40782–91. https://doi.org/10.1021/acsami.7b09863.ZopeISFooSSeahDGJAkunuriATDasariADevelopment and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton FabricsACS Appl Mater Interfaces201794078291https://doi.org/10.1021/acsami.7b09863.Search in Google Scholar
Nosaka T, Lankone R, Westerhoff P, Herckes P. Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polym Test 2020;86:106497. https://doi.org/10.1016/j.polymertesting.2020.106497.NosakaTLankoneRWesterhoffPHerckesPFlame retardant performance of carbonaceous nanomaterials on polyester fabricPolym Test202086106497https://doi.org/10.1016/j.polymertesting.2020.106497.Search in Google Scholar
Bhuiyan MAR, Wang L, Shanks RA, Ding J. Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 2019;54:9267–81. https://doi.org/10.1007/s10853-019-03495-8.BhuiyanMARWangLShanksRADingJPolyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfortJ Mater Sci201954926781https://doi.org/10.1007/s10853-019-03495-8.Search in Google Scholar
Bhuiyan MAR, Wang L, Anjuman Ara Z, Saha T, Wang X. Omniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfort. J Ind Text 2022;51:6590S–6611S. https://doi.org/10.1177/15280837221078535.BhuiyanMARWangLAnjuman AraZSahaTWangXOmniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfortJ Ind Text2022516590S6611Shttps://doi.org/10.1177/15280837221078535.Search in Google Scholar
Liang S, Neisius NM, Gaan S. Recent developments in flame retardant polymeric coatings. Prog Org Coat 2013;76:1642–65. https://doi.org/10.1016/j.porgcoat.2013.07.014.LiangSNeisiusNMGaanSRecent developments in flame retardant polymeric coatingsProg Org Coat201376164265https://doi.org/10.1016/j.porgcoat.2013.07.014.Search in Google Scholar
Ortelli S, Malucelli G, Cuttica F, Blosi M, Zanoni I, Costa AL. Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellulose 2018;25:2755–65. https://doi.org/10.1007/s10570-018-1745-z.OrtelliSMalucelliGCutticaFBlosiMZanoniICostaALCoatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabricsCellulose201825275565https://doi.org/10.1007/s10570-018-1745-z.Search in Google Scholar
Horrocks AR. Overview of traditional flame retardant solutions including coating and back-coating technologies. In: Alongi J, Horrocks AR, Carosio F, Malucelli G, editors. Update Flame Retard. Text. State Art Environ. Issues Innov. Solut., Shawburry, UK: Smithers Rapra; 2013, p. 123–78.HorrocksAROverview of traditional flame retardant solutions including coating and back-coating technologiesIn:AlongiJHorrocksARCarosioFMalucelliGeditors.Update Flame Retard. Text. State Art Environ. Issues Innov. Solut.Shawburry, UKSmithers Rapra201312378Search in Google Scholar
Özer MS, Wesemann M-J, Gaan S. Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations. Prog Org Coat 2023;175:107363. https://doi.org/10.1016/j.porgcoat.2022.107363.ÖzerMSWesemannM-JGaanSFlame retardant back-coated PET fabric with DOPO-based environmentally friendly formulationsProg Org Coat2023175107363https://doi.org/10.1016/j.porgcoat.2022.107363.Search in Google Scholar
Yao Z, Liu X, Qian L, Chen Y, Xu B, Qiu Y. Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester. Polymers 2019;11:1969. https://doi.org/10.3390/polym11121969.YaoZLiuXQianLChenYXuBQiuYSynthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in PolyesterPolymers2019111969https://doi.org/10.3390/polym11121969.Search in Google Scholar
Sun Y, Liu C, Hong Y, Liu R, Zhou X. Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent. Prog Org Coat 2019;137:105323. https://doi.org/10.1016/j.porgcoat.2019.105323.SunYLiuCHongYLiuRZhouXSynthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agentProg Org Coat2019137105323https://doi.org/10.1016/j.porgcoat.2019.105323.Search in Google Scholar
Gite VV, Mahulikar PP, Hundiwale DG. Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog Org Coat 2010;68:307–12. https://doi.org/10.1016/j.porgcoat.2010.03.008.GiteVVMahulikarPPHundiwaleDGPreparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanateProg Org Coat20106830712https://doi.org/10.1016/j.porgcoat.2010.03.008.Search in Google Scholar
Havlova M. Air Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven Fabrics. Fibres Text 2020;27:12–8.HavlovaMAir Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven FabricsFibres Text202027128Search in Google Scholar
Eryuruk SH. The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics. Int J Cloth Sci Technol 2019;32:208–17. https://doi.org/10.1108/IJCST-01-2019-0003.EryurukSHThe effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabricsInt J Cloth Sci Technol20193220817https://doi.org/10.1108/IJCST-01-2019-0003.Search in Google Scholar
Gültekin E, Çelik Hİ, Nohut S, Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. J Text Inst 2020;111:1641–51. https://doi.org/10.1080/00405000.2020.1727267.GültekinEÇelikHİNohutSElmaSKPredicting air permeability and porosity of nonwovens with image processing and artificial intelligence methodsJ Text Inst2020111164151https://doi.org/10.1080/00405000.2020.1727267.Search in Google Scholar
Berkalp ÖB. Air Permeability & Porosity in Spun-laced Fabrics. Fibres Text East Eur 2006;14:81–5.BerkalpÖBAir Permeability & Porosity in Spun-laced FabricsFibres Text East Eur200614815Search in Google Scholar
Güneşoğlu S. The statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabric. Tekst Ve Konfeksiyon 2015;25:256–62.GüneşoğluSThe statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabricTekst Ve Konfeksiyon20152525662Search in Google Scholar
Mondal S, Hu JL. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J Appl Polym Sci 2007;103:3370–6. https://doi.org/10.1002/app.25437.MondalSHuJLA novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coatingJ Appl Polym Sci200710333706https://doi.org/10.1002/app.25437.Search in Google Scholar
Ozen I. Multi-layered Breathable Fabric Structures with Enhanced Water Resistance. J Eng Fibers Fabr 2012;7:63–9. https://doi.org/10.1177/155892501200700402.OzenIMulti-layered Breathable Fabric Structures with Enhanced Water ResistanceJ Eng Fibers Fabr20127639https://doi.org/10.1177/155892501200700402.Search in Google Scholar
Lubnin A, Anderle G, Snow G, Varn R, Lenhard S. Novel, “breathable” polyurethane dispersions. Paint Coat Ind 2005;21:26–35.LubninAAnderleGSnowGVarnRLenhardSNovel, “breathable” polyurethane dispersionsPaint Coat Ind2005212635Search in Google Scholar
Wei B, Xu F, Azhar SW, Li W, Lou L, Liu W, et al. Fabrication and property of discarded denim fabric/polypropylene composites. J Ind Text 2015;44:798–812. https://doi.org/10.1177/1528083714550055.WeiBXuFAzharSWLiWLouLLiuWFabrication and property of discarded denim fabric/polypropylene compositesJ Ind Text201544798812https://doi.org/10.1177/1528083714550055.Search in Google Scholar
Hu X, Tian M, Qu L, Zhu S, Han G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015;95:625–33. https://doi.org/10.1016/j.carbon.2015.08.099.HuXTianMQuLZhuSHanGMultifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking propertiesCarbon20159562533https://doi.org/10.1016/j.carbon.2015.08.099.Search in Google Scholar
Potočić Matković VM, Čubrić IS, Skenderi Z. Thermal resistance of polyurethane-coated knitted fabrics before and after weathering. Text Res J 2014;84:2015–25. https://doi.org/10.1177/0040517514537368.Potočić MatkovićVMČubrićISSkenderiZThermal resistance of polyurethane-coated knitted fabrics before and after weatheringText Res J201484201525https://doi.org/10.1177/0040517514537368.Search in Google Scholar
Gurudatt K, De P, Sarkar RK, Bardhan MK. Studies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated Textiles. J Ind Text 2001;31:103–22. https://doi.org/10.1106/LN83-8YPN-TAXA-MMMM.GurudattKDePSarkarRKBardhanMKStudies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated TextilesJ Ind Text20013110322https://doi.org/10.1106/LN83-8YPN-TAXA-MMMM.Search in Google Scholar
Abbas A, Zhao Y, Ali U, Lin T. Improving heat-retaining property of cotton fabrics through surface coatings. J Text Inst 2017;108:1808–14. https://doi.org/10.1080/00405000.2017.1292638.AbbasAZhaoYAliULinTImproving heat-retaining property of cotton fabrics through surface coatingsJ Text Inst2017108180814https://doi.org/10.1080/00405000.2017.1292638.Search in Google Scholar
Souza JM, Sampaio S, Silva WC, De Lima SG, Zille A, Fangueiro R. Characterization of functional single jersey knitted fabrics using non-conventional yarns for sportswear. Text Res J 2018;88:275–92. https://doi.org/10.1177/0040517516677226.SouzaJMSampaioSSilvaWCDe LimaSGZilleAFangueiroRCharacterization of functional single jersey knitted fabrics using non-conventional yarns for sportswearText Res J20188827592https://doi.org/10.1177/0040517516677226.Search in Google Scholar
Mangat MM, Hes L. Comfort aspects of denim garments. In: Paul R, editor. Denim Manuf. Finish. Appl., Woodhead Publishing; 2015, p. 461–79. https://doi.org/10.1016/B978-0-85709-843-6.00015-9.MangatMMHesLComfort aspects of denim garmentsIn:PaulReditor.Denim Manuf. Finish. Appl.Woodhead Publishing201546179https://doi.org/10.1016/B978-0-85709-843-6.00015-9.Search in Google Scholar
Lewis DM, Hawkes JA, Hawkes L, Mama J. A new approach to flame-retardant cellulosic fabrics in an environmentally safe manner. Color Technol 2020;136:512–25. https://doi.org/10.1111/cote.12504.LewisDMHawkesJAHawkesLMamaJA new approach to flame-retardant cellulosic fabrics in an environmentally safe mannerColor Technol202013651225https://doi.org/10.1111/cote.12504.Search in Google Scholar
Younis AA. Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric. Egypt J Pet 2016;25:161–9. https://doi.org/10.1016/j.ejpe.2015.04.001.YounisAAEvaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabricEgypt J Pet2016251619https://doi.org/10.1016/j.ejpe.2015.04.001.Search in Google Scholar
Martín C, Ronda JC, Cádiz V. Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 2006;91:747–54. https://doi.org/10.1016/j.polymdegradstab.2005.05.025.MartínCRondaJCCádizVBoron-containing novolac resins as flame retardant materialsPolym Degrad Stab20069174754https://doi.org/10.1016/j.polymdegradstab.2005.05.025.Search in Google Scholar
Poon C, Kan C. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 2015;121:457–67. https://doi.org/10.1016/j.carbpol.2014.11.064.PoonCKanCEffects of TiO2 and curing temperatures on flame retardant finishing of cottonCarbohydr Polym201512145767https://doi.org/10.1016/j.carbpol.2014.11.064.Search in Google Scholar