Acceso abierto

Investigating the Effects of PU-Based Back-Coating with Boric Acid and Titanium Dioxide Additives on Flame Retardancy Levels and Comfort Properties of 100% Cotton Denim Fabric

,  y   
08 oct 2024

Cite
Descargar portada

Adamu BF. Permeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and Polyester. J Inst Eng India Ser E 2022;103:253–8. https://doi.org/10.1007/s40034-022-00249-1. AdamuBF Permeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and Polyester J Inst Eng India Ser E 2022 103 253 8 https://doi.org/10.1007/s40034-022-00249-1. Search in Google Scholar

Becenen N, Eyi G. Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2. J Text Inst 2021;112:1080–92. https://doi.org/10.1080/00405000.2020.1800974. BecenenN EyiG Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2 J Text Inst 2021 112 1080 92 https://doi.org/10.1080/00405000.2020.1800974. Search in Google Scholar

Periyasamy AP, Militky J. Denim and consumers’ phase of life cycle. In: Muthu SS, editor. Sustain. Denim, Sawston: Woodhead; 2017, p. 257–82. https://doi.org/10.1016/B978-0-08-102043-2.00010-1. PeriyasamyAP MilitkyJ Denim and consumers’ phase of life cycle In: MuthuSS editor. Sustain Denim, Sawston Woodhead 2017 257 82 https://doi.org/10.1016/B978-0-08-102043-2.00010-1. Search in Google Scholar

Becenen N, Erdoğan S. Chitosan and nano-TiO2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charring. J Ind Text 2022;51:1252S–1278S. https://doi.org/10.1177/15280837221099632. BecenenN ErdoğanS Chitosan and nano-TiO2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charring J Ind Text 2022 51 1252S 1278S https://doi.org/10.1177/15280837221099632. Search in Google Scholar

Talebi S, Montazer M. Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles. Cellulose 2020;27:6643–61. https://doi.org/10.1007/s10570-020-03195-6. TalebiS MontazerM Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles Cellulose 2020 27 6643 61 https://doi.org/10.1007/s10570-020-03195-6. Search in Google Scholar

Liu Y, Wang X, Qi K, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18:3454–60. https://doi.org/10.1039/b801849a. LiuY WangX QiK XinJH Functionalization of cotton with carbon nanotubes J Mater Chem 2008 18 3454 60 https://doi.org/10.1039/b801849a. Search in Google Scholar

Javed A, Wiener J, Saskova J, Müllerová J. Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics. Polymers 2022;14:3414. https://doi.org/10.3390/polym14163414. JavedA WienerJ SaskovaJ MüllerováJ Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics Polymers 2022 14 3414 https://doi.org/10.3390/polym14163414. Search in Google Scholar

Ling C, Guo L, Wang Z. A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 2023;194:116264. https://doi.org/10.1016/j.indcrop.2023.116264. LingC GuoL WangZ A review on the state of flame-retardant cotton fabric: Mechanisms and applications Ind Crops Prod 2023 194 116264 https://doi.org/10.1016/j.indcrop.2023.116264. Search in Google Scholar

Zhang K, Zong L, Tan Y, Ji Q, Yun W, Shi R, et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 2016;136:121–7. https://doi.org/10.1016/j.carbpol.2015.09.026. ZhangK ZongL TanY JiQ YunW ShiR Improve the flame retardancy of cellulose fibers by grafting zinc ion Carbohydr Polym 2016 136 121 7 https://doi.org/10.1016/j.carbpol.2015.09.026. Search in Google Scholar

Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Vieillard J, et al. Functional Cotton Fabric: Enhancement in Flame Retardancy and Thermal Stability. Int J Nanoparticles Nanotechnol 2020;6:1–13. https://doi.org/10.35840/2631-5084/5537. AbedA BouaziziN GiraudS El AchariA CampagneC VieillardJ Functional Cotton Fabric: Enhancement in Flame Retardancy and Thermal Stability Int J Nanoparticles Nanotechnol 2020 6 1 13 https://doi.org/10.35840/2631-5084/5537. Search in Google Scholar

Attia N, Ahmed H, Yehia D, Hassan M, Zaddin Y. Novel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservation. J Ind Text 2017;46:1379–92. https://doi.org/10.1177/1528083715619957. AttiaN AhmedH YehiaD HassanM ZaddinY Novel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservation J Ind Text 2017 46 1379 92 https://doi.org/10.1177/1528083715619957. Search in Google Scholar

Wang Q, Undrell JP, Gao Y, Cai G, Buffet J-C, Wilkie CA, et al. Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites. Macromolecules 2013;46:6145–50. https://doi.org/10.1021/ma401133s. WangQ UndrellJP GaoY CaiG BuffetJ-C WilkieCA Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites Macromolecules 2013 46 6145 50 https://doi.org/10.1021/ma401133s. Search in Google Scholar

Zhou C, Zhou S, You F, Wang Z, Li D, Li G, et al. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J Polym Res 2023;30:437. https://doi.org/10.1007/s10965-023-03812-5. ZhouC ZhouS YouF WangZ LiD LiG Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols J Polym Res 2023 30 437 https://doi.org/10.1007/s10965-023-03812-5. Search in Google Scholar

Akarslan F. Investigation on Fire Retardancy Properties of Boric Acid Doped Textile Materials. Acta Phys Pol A 2015;128:B-403–B-405. https://doi.org/10.12693/APhysPolA.128.B-403. AkarslanF Investigation on Fire Retardancy Properties of Boric Acid Doped Textile Materials Acta Phys Pol A 2015 128 B-403 B-405 https://doi.org/10.12693/APhysPolA.128.B-403. Search in Google Scholar

Qiu X, Li Z, Li X, Zhang Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem Eng J 2018;334:108–22. https://doi.org/10.1016/j.cej.2017.09.194. QiuX LiZ LiX ZhangZ Flame retardant coatings prepared using layer by layer assembly: A review Chem Eng J 2018 334 108 22 https://doi.org/10.1016/j.cej.2017.09.194. Search in Google Scholar

Duan H, Li J, Gu J, Lu L, Qi D. Onepot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomers. React Funct Polym 2022;181:105438. https://doi.org/10.1016/j.reactfunctpolym.2022.105438. DuanH LiJ GuJ LuL QiD Onepot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomers React Funct Polym 2022 181 105438 https://doi.org/10.1016/j.reactfunctpolym.2022.105438. Search in Google Scholar

Ayesh M, Horrocks AR, Kandola BK. The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton. Molecules 2022;27:8737. https://doi.org/10.3390/molecules27248737. AyeshM HorrocksAR KandolaBK The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton Molecules 2022 27 8737 https://doi.org/10.3390/molecules27248737. Search in Google Scholar

Bentis A, Boukhriss A, Gmouh S. Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J Sol-Gel Sci Technol 2020;94:719–30. https://doi.org/10.1007/s10971-020-05224-z. BentisA BoukhrissA GmouhS Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method J Sol-Gel Sci Technol 2020 94 719 30 https://doi.org/10.1007/s10971-020-05224-z. Search in Google Scholar

Zope IS, Foo S, Seah DGJ, Akunuri AT, Dasari A. Development and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton Fabrics. ACS Appl Mater Interfaces 2017;9:40782–91. https://doi.org/10.1021/acsami.7b09863. ZopeIS FooS SeahDGJ AkunuriAT DasariA Development and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton Fabrics ACS Appl Mater Interfaces 2017 9 40782 91 https://doi.org/10.1021/acsami.7b09863. Search in Google Scholar

Nosaka T, Lankone R, Westerhoff P, Herckes P. Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polym Test 2020;86:106497. https://doi.org/10.1016/j.polymertesting.2020.106497. NosakaT LankoneR WesterhoffP HerckesP Flame retardant performance of carbonaceous nanomaterials on polyester fabric Polym Test 2020 86 106497 https://doi.org/10.1016/j.polymertesting.2020.106497. Search in Google Scholar

Bhuiyan MAR, Wang L, Shanks RA, Ding J. Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 2019;54:9267–81. https://doi.org/10.1007/s10853-019-03495-8. BhuiyanMAR WangL ShanksRA DingJ Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort J Mater Sci 2019 54 9267 81 https://doi.org/10.1007/s10853-019-03495-8. Search in Google Scholar

Bhuiyan MAR, Wang L, Anjuman Ara Z, Saha T, Wang X. Omniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfort. J Ind Text 2022;51:6590S–6611S. https://doi.org/10.1177/15280837221078535. BhuiyanMAR WangL Anjuman AraZ SahaT WangX Omniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfort J Ind Text 2022 51 6590S 6611S https://doi.org/10.1177/15280837221078535. Search in Google Scholar

Liang S, Neisius NM, Gaan S. Recent developments in flame retardant polymeric coatings. Prog Org Coat 2013;76:1642–65. https://doi.org/10.1016/j.porgcoat.2013.07.014. LiangS NeisiusNM GaanS Recent developments in flame retardant polymeric coatings Prog Org Coat 2013 76 1642 65 https://doi.org/10.1016/j.porgcoat.2013.07.014. Search in Google Scholar

Ortelli S, Malucelli G, Cuttica F, Blosi M, Zanoni I, Costa AL. Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellulose 2018;25:2755–65. https://doi.org/10.1007/s10570-018-1745-z. OrtelliS MalucelliG CutticaF BlosiM ZanoniI CostaAL Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics Cellulose 2018 25 2755 65 https://doi.org/10.1007/s10570-018-1745-z. Search in Google Scholar

Horrocks AR. Overview of traditional flame retardant solutions including coating and back-coating technologies. In: Alongi J, Horrocks AR, Carosio F, Malucelli G, editors. Update Flame Retard. Text. State Art Environ. Issues Innov. Solut., Shawburry, UK: Smithers Rapra; 2013, p. 123–78. HorrocksAR Overview of traditional flame retardant solutions including coating and back-coating technologies In: AlongiJ HorrocksAR CarosioF MalucelliG editors. Update Flame Retard. Text. State Art Environ. Issues Innov. Solut. Shawburry, UK Smithers Rapra 2013 123 78 Search in Google Scholar

Özer MS, Wesemann M-J, Gaan S. Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations. Prog Org Coat 2023;175:107363. https://doi.org/10.1016/j.porgcoat.2022.107363. ÖzerMS WesemannM-J GaanS Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations Prog Org Coat 2023 175 107363 https://doi.org/10.1016/j.porgcoat.2022.107363. Search in Google Scholar

Yao Z, Liu X, Qian L, Chen Y, Xu B, Qiu Y. Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester. Polymers 2019;11:1969. https://doi.org/10.3390/polym11121969. YaoZ LiuX QianL ChenY XuB QiuY Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester Polymers 2019 11 1969 https://doi.org/10.3390/polym11121969. Search in Google Scholar

Sun Y, Liu C, Hong Y, Liu R, Zhou X. Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent. Prog Org Coat 2019;137:105323. https://doi.org/10.1016/j.porgcoat.2019.105323. SunY LiuC HongY LiuR ZhouX Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent Prog Org Coat 2019 137 105323 https://doi.org/10.1016/j.porgcoat.2019.105323. Search in Google Scholar

Gite VV, Mahulikar PP, Hundiwale DG. Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog Org Coat 2010;68:307–12. https://doi.org/10.1016/j.porgcoat.2010.03.008. GiteVV MahulikarPP HundiwaleDG Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate Prog Org Coat 2010 68 307 12 https://doi.org/10.1016/j.porgcoat.2010.03.008. Search in Google Scholar

Havlova M. Air Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven Fabrics. Fibres Text 2020;27:12–8. HavlovaM Air Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven Fabrics Fibres Text 2020 27 12 8 Search in Google Scholar

Eryuruk SH. The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics. Int J Cloth Sci Technol 2019;32:208–17. https://doi.org/10.1108/IJCST-01-2019-0003. EryurukSH The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics Int J Cloth Sci Technol 2019 32 208 17 https://doi.org/10.1108/IJCST-01-2019-0003. Search in Google Scholar

Gültekin E, Çelik Hİ, Nohut S, Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. J Text Inst 2020;111:1641–51. https://doi.org/10.1080/00405000.2020.1727267. GültekinE Çelik NohutS ElmaSK Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods J Text Inst 2020 111 1641 51 https://doi.org/10.1080/00405000.2020.1727267. Search in Google Scholar

Berkalp ÖB. Air Permeability & Porosity in Spun-laced Fabrics. Fibres Text East Eur 2006;14:81–5. BerkalpÖB Air Permeability & Porosity in Spun-laced Fabrics Fibres Text East Eur 2006 14 81 5 Search in Google Scholar

Güneşoğlu S. The statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabric. Tekst Ve Konfeksiyon 2015;25:256–62. GüneşoğluS The statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabric Tekst Ve Konfeksiyon 2015 25 256 62 Search in Google Scholar

Mondal S, Hu JL. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J Appl Polym Sci 2007;103:3370–6. https://doi.org/10.1002/app.25437. MondalS HuJL A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating J Appl Polym Sci 2007 103 3370 6 https://doi.org/10.1002/app.25437. Search in Google Scholar

Ozen I. Multi-layered Breathable Fabric Structures with Enhanced Water Resistance. J Eng Fibers Fabr 2012;7:63–9. https://doi.org/10.1177/155892501200700402. OzenI Multi-layered Breathable Fabric Structures with Enhanced Water Resistance J Eng Fibers Fabr 2012 7 63 9 https://doi.org/10.1177/155892501200700402. Search in Google Scholar

Lubnin A, Anderle G, Snow G, Varn R, Lenhard S. Novel, “breathable” polyurethane dispersions. Paint Coat Ind 2005;21:26–35. LubninA AnderleG SnowG VarnR LenhardS Novel, “breathable” polyurethane dispersions Paint Coat Ind 2005 21 26 35 Search in Google Scholar

Wei B, Xu F, Azhar SW, Li W, Lou L, Liu W, et al. Fabrication and property of discarded denim fabric/polypropylene composites. J Ind Text 2015;44:798–812. https://doi.org/10.1177/1528083714550055. WeiB XuF AzharSW LiW LouL LiuW Fabrication and property of discarded denim fabric/polypropylene composites J Ind Text 2015 44 798 812 https://doi.org/10.1177/1528083714550055. Search in Google Scholar

Hu X, Tian M, Qu L, Zhu S, Han G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015;95:625–33. https://doi.org/10.1016/j.carbon.2015.08.099. HuX TianM QuL ZhuS HanG Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties Carbon 2015 95 625 33 https://doi.org/10.1016/j.carbon.2015.08.099. Search in Google Scholar

Potočić Matković VM, Čubrić IS, Skenderi Z. Thermal resistance of polyurethane-coated knitted fabrics before and after weathering. Text Res J 2014;84:2015–25. https://doi.org/10.1177/0040517514537368. Potočić MatkovićVM ČubrićIS SkenderiZ Thermal resistance of polyurethane-coated knitted fabrics before and after weathering Text Res J 2014 84 2015 25 https://doi.org/10.1177/0040517514537368. Search in Google Scholar

Gurudatt K, De P, Sarkar RK, Bardhan MK. Studies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated Textiles. J Ind Text 2001;31:103–22. https://doi.org/10.1106/LN83-8YPN-TAXA-MMMM. GurudattK DeP SarkarRK BardhanMK Studies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated Textiles J Ind Text 2001 31 103 22 https://doi.org/10.1106/LN83-8YPN-TAXA-MMMM. Search in Google Scholar

Abbas A, Zhao Y, Ali U, Lin T. Improving heat-retaining property of cotton fabrics through surface coatings. J Text Inst 2017;108:1808–14. https://doi.org/10.1080/00405000.2017.1292638. AbbasA ZhaoY AliU LinT Improving heat-retaining property of cotton fabrics through surface coatings J Text Inst 2017 108 1808 14 https://doi.org/10.1080/00405000.2017.1292638. Search in Google Scholar

Souza JM, Sampaio S, Silva WC, De Lima SG, Zille A, Fangueiro R. Characterization of functional single jersey knitted fabrics using non-conventional yarns for sportswear. Text Res J 2018;88:275–92. https://doi.org/10.1177/0040517516677226. SouzaJM SampaioS SilvaWC De LimaSG ZilleA FangueiroR Characterization of functional single jersey knitted fabrics using non-conventional yarns for sportswear Text Res J 2018 88 275 92 https://doi.org/10.1177/0040517516677226. Search in Google Scholar

Mangat MM, Hes L. Comfort aspects of denim garments. In: Paul R, editor. Denim Manuf. Finish. Appl., Woodhead Publishing; 2015, p. 461–79. https://doi.org/10.1016/B978-0-85709-843-6.00015-9. MangatMM HesL Comfort aspects of denim garments In: PaulR editor. Denim Manuf. Finish. Appl. Woodhead Publishing 2015 461 79 https://doi.org/10.1016/B978-0-85709-843-6.00015-9. Search in Google Scholar

Lewis DM, Hawkes JA, Hawkes L, Mama J. A new approach to flame-retardant cellulosic fabrics in an environmentally safe manner. Color Technol 2020;136:512–25. https://doi.org/10.1111/cote.12504. LewisDM HawkesJA HawkesL MamaJ A new approach to flame-retardant cellulosic fabrics in an environmentally safe manner Color Technol 2020 136 512 25 https://doi.org/10.1111/cote.12504. Search in Google Scholar

Younis AA. Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric. Egypt J Pet 2016;25:161–9. https://doi.org/10.1016/j.ejpe.2015.04.001. YounisAA Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric Egypt J Pet 2016 25 161 9 https://doi.org/10.1016/j.ejpe.2015.04.001. Search in Google Scholar

Martín C, Ronda JC, Cádiz V. Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 2006;91:747–54. https://doi.org/10.1016/j.polymdegradstab.2005.05.025. MartínC RondaJC CádizV Boron-containing novolac resins as flame retardant materials Polym Degrad Stab 2006 91 747 54 https://doi.org/10.1016/j.polymdegradstab.2005.05.025. Search in Google Scholar

Poon C, Kan C. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 2015;121:457–67. https://doi.org/10.1016/j.carbpol.2014.11.064. PoonC KanC Effects of TiO2 and curing temperatures on flame retardant finishing of cotton Carbohydr Polym 2015 121 457 67 https://doi.org/10.1016/j.carbpol.2014.11.064. Search in Google Scholar