Optimizing the pine wood drying process using a critical diffusion coefficient and a timed moistening impulse
, y
04 jun 2022
Acerca de este artículo
Categoría del artículo: Research paper
Publicado en línea: 04 jun 2022
Páginas: 150 - 165
Recibido: 17 nov 2021
Aceptado: 31 dic 2021
DOI: https://doi.org/10.2478/fsmu-2021-0017
Palabras clave
© 2021 Hannes Tamme et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Industrial 35 mm pine wood drying schedule used in the experiment and the simulation section_
Time (h) | Air temp. (°C) | Air RH (%) |
---|---|---|
0 | 20 | 93 |
1 | 47 | 93 |
12 | 47 | 93 |
36 | 50 | 90 |
60 | 52 | 85 |
84 | 52 | 80 |
108 | 52 | 69 |
132 | 52 | 59 |
156 | 52 | 49 |
180 | 52 | 39 |
204 | 52 | 39 |
Optimized industrial pine wood drying schedule based on the definition of critical DC and critical RH_
Time (h) | Air temp. (°C) | Air RH (%) |
---|---|---|
0 | 20 | 60 |
1 | 47 | 83 |
113 | 52 | 81 |
132 | 52 | 59 |
156 | 52 | 49 |
180 | 52 | 39 |
204 | 52 | 39 |
A forced drying schedule for pine wood_ Data regarding the stages of the moistening impulse are given in parenthesis in the table_
Time (h) | Air temp. (°C) | Air RH (%) |
---|---|---|
0 | 20 | 93 |
1 | 47 | 93 |
24 | 47 | 77 |
48 | 50 | 61 |
72 | 52 | 45 |
(90) | (52) | (40) |
96 | 52 | 29 |
120 | 52 | 13 |
Calibration functions were derived from Formula (4) for electrical resistance sensors at depths of 1 mm and 4 mm from the surface of the wood in sections AB, BC, and CD_
Depth (mm) | AB | BC | CD |
---|---|---|---|
1 mm | y = −30.277x+1584.9 | y = −0.6058x+56.458 | y = −0.3867x+42.873 |
4 mm | y = −32.895x+1691.4 | y = −0.7255x+73.292 | y = −1.1495+98.947 |