Acceso abierto

Partial Correctness of GCD Algorithm

,  y   
24 dic 2018

Cite
Descargar portada

In this paper we present a formalization in the Mizar system [2, 1] of the correctness of the subtraction-based version of Euclid’s algorithm computing the greatest common divisor of natural numbers. The algorithm is written in terms of simple-named complex-valued nominative data [11, 4].

The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [7]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic with partial pre- and post-conditions [8, 10, 5, 3].

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales, Informática, Informática, otros