Acceso abierto

Modelling height to diameter ratio – an opportunity to increase Norway spruce stand stability in the Western Carpathians


Cite

Abetz, P., 1979: Brauchen wir “Durchforstungshilfen”? Schweizerische Zeitschrift für Forstwesen 130:945-963. Search in Google Scholar

Akaike, H., 1974: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716-723. Search in Google Scholar

Albert, M., Schmidt, M., 2010: Climate-sensitive modelling of siteproductivity relationship for Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.). Forest Ecology and Management 259:739-749. Search in Google Scholar

Albrecht, A., Hanewinkel, M., Bauhus, J., 2012: How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modelling based on long-term observations. European Journal of Forest Research 131:229-247. Search in Google Scholar

Baskerville, G. L., 1972: Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2:49-53. Search in Google Scholar

Bošeľa, M., 2010: Climatic and soil characteristics of the altitudinal vegetation zones and edaphic-trophic units. Lesnícky časopis - Forestry Journal 56:215-234. Search in Google Scholar

Bošeľa, M., Máliš, F., Kulla, L., Šebeň, V., Deckmyn, G., 2013: Ecologically based height growth model and derived raster maps of Norway spruce site index in the Western Carpathians. European Journal of Forest Research 132:691-705. Search in Google Scholar

Halaj, J., Petráš, R., 1998: Rastové tabuľky hlavných drevín. Bratislava, Slovak Academic Press, 325 p. Search in Google Scholar

Harrington, T. B., Harrington, C. A., DeBell, D. S., 2009: Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Ecology and Management 258:18-25. Search in Google Scholar

Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T., Leuschner, C.H., 2010: Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian Montane rain forest. Biotropica 42:140-148. Search in Google Scholar

Huang, S., Titus, S. J., 1999: An individual tree height increment model for mixed white spruce and aspen stands in Alberta, Canada. Forest Ecology and Management 123:41-53. Search in Google Scholar

Kamimura, K., Shiraishi, N., 2007: A review of strategies for wind damage assessment in Japanes forests. Journal of Forest Research 12:162-176. Search in Google Scholar

Kamimura, K., Gardiner, B., Kato, A., Hiroshima, T., Shiraishi, N., 2008: Developing a decision support approach to reduce wind damage risk - a case study on sugi (Cryptomeria japonica (L.f.) D.Don) forests in Japan. Forestry 81:429-445. Search in Google Scholar

Konôpka, B., Konôpka, J., 2003: Static stability of forest stands in the seventh altitudinal vegetation zone in Slovakia. Journal of Forest Science 49:474-481. Search in Google Scholar

Konôpka, B., Konôpka, J., Raši, R., 2005: Damage to forest caused by wind, snow and rime in Slovakia during the years 1996-2003. Lesnícky časopis - Forestry Journal 51:31-43. Search in Google Scholar

Konôpka, J., 1992: Models of spruce target trees from the viewpoint of static stability. Academy of Agricultural Sciences of the ČSFR, Praha, 106 p. Search in Google Scholar

Ledermann, T., Neumann, M., 2006: Biomass equations from data of old long-term experimental plots. Austrian Journal of Forest Science 123:47-64. Search in Google Scholar

Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2:164-168. Search in Google Scholar

Lohmander, P., Helles, F., 1987: Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research 2:227-238. Search in Google Scholar

Mäkinen, H., Nöjd, P., Isomäki, A., 2002: Radial, height and volume increment variation in Picea abies (L.) Karst. stands with varying thinning intensities. Scandinavian Journal of Forest Research 17:304-316. Search in Google Scholar

Marklund, L.G., 1987: Biomass functions for Norway spruce (Picea abies L. Karst.) in Sweden, vol 43. SLU, Department of Forest Survey, p. 1-127. Search in Google Scholar

Marquardt, D. W., 1963: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics 11:431-441. Search in Google Scholar

Martín-Alcón, S., González-Olabarria, J. R., Coll, L., 2010: Wind and Snow Damage in the Pyrenees Pine Forests: Effect of Stand Attributes and Location. Silva Fennica 44:399-410. Search in Google Scholar

Massey, F.J., 1951: The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46:68-78. Search in Google Scholar

Mitchell, S.J., 2013: Wind as a natural disturbance agent in forests: a synthesis. Forestry - An International Journal of Forest Research 86:147-157. Search in Google Scholar

Moore, J., 2000: Effects of soil type on the root anchorage strength of Pinus radiata. Forest Ecology and Management, 135:63-71. Search in Google Scholar

Motulsky, H. J., Christopoluos, A., 2003: Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego CA. Search in Google Scholar

Nicoll, B. C., Achim, A., Mochan, S., Gardiner, B. A., 2005: Does steep terrain influence tree stability? A field investigation. Canadian Journal of Forest Research 35:2360-2367. Search in Google Scholar

Nicoll, B. C., Gardiner, B. A., Rayner, B., Peace, A. J., 2006: Anchorage of coniferous trees in relation to species, soil type and rooting depth. Canadian Journal of Forest Research 36: 871-1883. Search in Google Scholar

Nilsson, U., 1993: Competition in young stands of Norway spruce and Scots pine. Swedish University of Agricultural Sciences, Uppsala, Doctoral Thesis, 173 p. Search in Google Scholar

O’Brien, R. M., 2007: A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity 41:673-690. Search in Google Scholar

Oliver, C. D., Larson, B. C., 1996: Forest stand dynamics. John Wiley & Sons, Inc., USA, 520 p. Search in Google Scholar

Opio, C., Jacob, N., Coopersmith, D., 2000: Height to diameter ratio as a competition index for young conifer plantations in northern British Columbia, Canada. Forest Ecology and Management 137:245-252. Search in Google Scholar

Päätalo, M.-L., Peltola, H., Kellomäki, S., 1999: Modelling the risk of snow damage to forests under short-term snow loading. Forest Ecology and Management 116:51-70. Search in Google Scholar

Peltola, H., 2006: Mechanical stability of trees under static loads. American Journal of Botany 93:1501-1511. Search in Google Scholar

Peltola, H., Kellomäki, S., 1993: A mechanistic model for calculating windthrow and stem breakage of Scots pine at stand edge. Silva Fennica 27:99-111. Search in Google Scholar

Peltola, H., Kellomäki, S., Hassinen, A., Granander, M., 2000: Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree pulling experiments in Finland. Forest Ecology and Management 135:143-153. Search in Google Scholar

Peltola, H., Kellomäki, S., Väisänen, H., Ikonen, V. P., 1999: A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Canadian Journal of Forest Research 29:647-661. Search in Google Scholar

R Development Core Team, 2012: R: A language and environment for statistical computing, reference index version 2.15.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, available at: http://www.R-project.org. Search in Google Scholar

Reineke, L. H., 1933: Perfecting a stand density index for even-aged forests. Journal of Agricultural Research 46:627-638. Search in Google Scholar

Robinson, C., Schumacker, R. E., 2009: Interaction Effects: Centering, Variance Inflation Factor, and Interpretation Issues. Multiple Linear Regression Viewpoints 35:6-11. Search in Google Scholar

Rottmann, M., 1985: Schneebruchschäden in Nadel-holzbestäden. Beiträge zur Beurteilung der Schneebruchgefährdung. Zur Schadensvorbeugung und zur Behandlung schneegeschädigter Nadelholzbestände. J.D. Sauerländer’s Verlag. Frankfurt am Main, 159 p. Search in Google Scholar

Schelhaas, M.-J., 2008: The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: a model-based approach. Forestry 81:399-414. Search in Google Scholar

Schelhaas, M.-J., Kramer, K., Peltola, H., van der Werf, D. C., Wijdeven, S. M. J., 2007: Introducing tree interactions in wind damage simulation. Ecological Modelling 207:197-209. Search in Google Scholar

Schindler, D., Bauhus, J., Mayer, H., 2012: Wind effects on trees. European Journal of Forest Research 131:159-163. Search in Google Scholar

Schmidt-Vogt, H., 1977: Die Fichte. Band I. Taxomomie - Verbreitung - Morphologie Ökologie - Waldgesellschaften. - Verlag Paul Parey, Hamburg and Berlin. Search in Google Scholar

Schütz, J.-P., Götz, M., Schmid, W., Mandallaz, D., 2006: Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. European Journal of Forest Research 125:291-302. Search in Google Scholar

Slodičák, M., 1995: Thinning regime in stands of Norway spruce subjected to snow and wind damage. In: Coutts, M. P., Grace, J. (eds.): Wind and Trees. Cambridge University Press, Cambridge, p. 436-447. Socha, J., Kulej, M., 2005: Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the Beskid Sadecki mountain range (southern Poland). Journal of Forest Science 53:538-547. Search in Google Scholar

Spellmann, H., Nagel, J., 1996: Zur Durchforstung von Fichte und Buche. Allgemeine Forst-Zeitung 95:106-110. Search in Google Scholar

Sprugel, D.G., 1983: Correcting for bias in log-transformed allometric equations. Ecology 64:209-210. Search in Google Scholar

Šmelko, Š., Merganič, J., Šebeň, V., Raši, R., Jankovič, J., 2006: Národná inventarizácia a monitoring lesov Slovenskej republiky. Metodika terénneho zberu údajov, 3. verzia. Zvolen, NLC, 104 p. Search in Google Scholar

Šmelko, Š., Šebeň, V., Bošeľa, M., Merganič, J., Jankovič, J., 2008: Národná Inventarizácia a Monitoring Lesov SR. Základná koncepcia a výber zo súhrnných informácií. LES/Slovenské lesokruhy č. 5 - 6, Príloha, Zvolen, NLC-LVÚ Zvolen, 15 p. Search in Google Scholar

Šmelko, Š., Wenk, G., Antanaitis, V., 1992: Rast, štruktúra a produkcia lesa. Bratislava, Príroda, 342 p. Search in Google Scholar

Tilman, D., 1988: Plant strategies and the dynamics and the structure of plant communities. Princeton University Press. Princeton, N. J., 360 p. Search in Google Scholar

Urata, T., Shibuya, M., Koizumi, A., Torita, H., Cha, J. Y., 2012: Both stem and crown mass affect tree resistance to uprooting. Journal of Forest Research 17:65-71. Search in Google Scholar

Valinger, E., Fridman, J., 1997: Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. Forest Ecology and Management 97:215-222. Search in Google Scholar

Valinger, E., Fridman, J., 1999: Models to assess the risk of snow and wind damage in pine, spruce, and birch forests in Sweden. Environmental Management 24:209-217. Search in Google Scholar

Valinger, E., Fridman, J., 2011: Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. Forest Ecology and Management 262:398-403. Search in Google Scholar

Valinger, E., Lundqvist, L., Bodesson, L., 1993: Assessing the risk of snow and wind damage from tree physical characteristics. Forestry 66:249-260. Search in Google Scholar

Vielledent, G., Courbaud, B., Kunstler, G., Dhôte, J. F., Clark, J. S., 2010: Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia 163:759-773. Search in Google Scholar

Vladovič, J., Merganič, J., Pavlenda, P., Grék, J., Ištoňa, J., Rizman, I. et al., 2005: Reakcia diverzity lesných fytocenóz na zmenu edaficko-klimatických podmienok Slovenska. Pracovné postupy terénnych prác obnovy typologických reprezentatívnych plôch. 2. verzia. Zvolen, NLC-LVÚ Zvolen, 82 p. Search in Google Scholar

Vospernik, S., Monserud, R. A., Sterba, H., 2010: Do individual- -tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? Forest Ecology and Management 260:1735-1753. Search in Google Scholar

Wang, Y., Titus, S. J., LeMay, V. M., 1998: Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Canadian Journal of Forest Research 28:1171-1183. Search in Google Scholar

Wiklund, K., Konôpka, B., Nilsson, L. O., 1995: Stem form and growth in Picea abies (L.) Karts. In response to water and mineral nutrient availability. Scandinavian Journal of Forest Research 10:326-332. Search in Google Scholar

Wonn, H. T., O’Hara, K. L., 2001: Height:diameter ratios and stability relationships for four Northern Rocky Mountain tree species. Western Journal of Applied Forestry 16:87-94. Search in Google Scholar

Zlatník, A., 1976: Lesnická fytocenologie. Praha, SZN, 495 p. Search in Google Scholar

eISSN:
0323-1046
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Plant Science, Ecology, other