[
Asse, D., Randin, Ch.F., Bonhomme, M., Delestrade, A., Chuine, I., 2020. Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 285–286: 107931. https://doi.org/10.1016/j.agrformet.2020.107931
]Search in Google Scholar
[
Basler, D., 2016. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217: 10–21. https://doi.org/10.1016/j.agrformet.2015.11.007
]Search in Google Scholar
[
Basler, D., Körner, C., 2012. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165: 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001
]Search in Google Scholar
[
Blümel, K., Chmielewski, F.-M., 2012. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164: 10–19. https://doi.org/10.1016/j.agrformet.2012.05.001
]Search in Google Scholar
[
Buonaiuto, D.M., Wolkovich, E.M., 2021. Differences be tween flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 109: 2922–2933. https://doi.org/10.1111/1365-2745.13708
]Search in Google Scholar
[
Chuine, I., 2000. A unified model for budburst of trees. Journal of Theoretical Biology, 207(3): 337–347. https://doi.org/10.1006/jtbi.2000.2178
]Search in Google Scholar
[
Chuine, I., Kramer, K., Hänninen, H., 2003. Plant development models. In Schwartz, M.D.(eds). Phenology: an integrative environmental science. Tasks for Vegetation Science, 39. Dordrecht: Springer, p. 217–235. https://doi.org/10.1007/978-94-007-0632-3_14
]Search in Google Scholar
[
Fazilova, N.F., 2013. Fenologiya kashtana konskogo obyknovennogo (Aesculus hippocastanum) v Uzbekistane [Phenology of horse chestnut (Aesculus hippocastanum) in Uzbekistan]. Aktualnye Napravleniya Nauchnyh Issledovanij XXI Veka: Teoriya i Praktika, 4: 134–136. (In Russian).
]Search in Google Scholar
[
Finn, G.A., Straszewski, A.E., Peterson, V., 2007. A general growth stage for describing trees and woody plants. Annals of Applied Biology, 151: 127–131. https://doi.org/10.1111/j.1744-7348.2007.00159.x
]Search in Google Scholar
[
Flynn, D.F.B., Wolkovich, E.M., 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219: 1353–1362. https://doi.org/10.1111/nph.15232
]Search in Google Scholar
[
Forsythe, W.C., Rykiel, E.J.Jr., Stahl, R.S., Wu, H.-I., Schoolfield, R.M., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80 (1): 87–95. https://doi.org/10.1016/0304-3800(94)00034-F
]Search in Google Scholar
[
Fu, Y.H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., Janssens, I.A., 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 25: 1696–1703. https://doi.org/10.1111/gcb.14599
]Search in Google Scholar
[
Gauzere, J., Delzon, S., Davi, H., Bonhomme, M., de Cortazar-Atauri, I.G., Chuine, I., 2017. Integrating interactive effects of chilling and photoperiod in pheno-logical process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology, 244–245: 9–20. https://doi.org/10.1016/j.agrformet.2017.05.011
]Search in Google Scholar
[
Gauzere, J., Lucas, C., Ronce, O., Davi, H., Chuine, I., 2019. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecological Modelling, 411: 108805. https://doi.org/10.1016/j.ecolmodel.2019.108805
]Search in Google Scholar
[
Ge, Q., Wang, H., Rutishauser, T., Dai, J., 2015. Phenological response to climate change in China: a meta-analysis, Global Change Biology, 21: 265–274. https://doi.org/10.1111/gcb.12648
]Search in Google Scholar
[
Geng, X., Fu, Y.H., Piao, S., Hao, F., De Boeck, H.J., Zhang, X., Chen, S., Guo, Y., Prevéy, J.S., Vitasse, Y., Peñuelas, J., Janssens, I.A., Stenseth, N.Ch., 2022. Higher temperature sensitivity of flowering than leaf-out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 31: 901–911. https://doi.org/10.1111/geb.13463
]Search in Google Scholar
[
Hänninen, H., 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213: 1–47. https://doi.org/10.14214/aff.7660
]Search in Google Scholar
[
Korsakova, S., Korzin, V., Plugatar, Y., Kazak, A., Gorina, V., Korzina, N., Khokhlov, S., Makoveichuk, K., 2023. Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8: 65. https://doi.org/10.3390/inventions8030065
]Search in Google Scholar
[
Korsakova, S.P., Korsakov, P.B., Bagrikova, N.A., 2020. Climatogenic changes and forecast of blooming timing of Juniperus deltoides (Cupressaceae). Science in the South of Russia, 16 (3): 40–52. https://doi.org/10.7868/S25000640200305
]Search in Google Scholar
[
Korzh, D.A., Trikoz, N.N., 2022. Vliyanie abioticheskih faktorov na sezonnuyu dinamiku chislennosti Cameraria ohridella Deschka & Dimic v Nikitskom Botanicheskom Sadu [The influence of abiotic factors on the seasonal dynamics of the abundance of Cameraria ohridella Deschka & Dimic in the Nikitsky Botanical Gardens]. Biologiya Rastenij i Sadovodstvo: Teoriya, Innovacii, 3 (164): 71–80. https://doi.org/10.36305/2712-7788-2022-3-164-71-80 (In Russian).
]Search in Google Scholar
[
Kuranda, Yu.V., 2021. Semennaya reprodukciya Aesculus hippocastanum L. v kollekcii barnaulskogo dendrariya [Seed reproduction of Aesculus hippocastanum L. in the collection of the Barnaul arboretum]. Trudy po Introdukcii i Akklimatizacii Rastenij, 1: 583–588. (In Russian).
]Search in Google Scholar
[
Lang, G., Early, J.D., Martin, G., Darnell. R., 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Science, 22: 371–377. https://doi.org/10.21273/HORTSCI.22.5.701b
]Search in Google Scholar
[
Laube, J., Sparks, T.H., Estrella, N., Höfler, J., Ankerst, D.P., Menzel, A., 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20 (1): 170–182. https://doi.org/10.1111/gcb.12360
]Search in Google Scholar
[
Malyshev, A.V., Henry, H.A.L., Bolte, A., Arfin Khan, M.A.S., Kreyling, J., 2018. Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings. Agricultural and Forest Meteorology, 248: 82–90. https://doi.org/10.1016/j.agrformet.2017.09.011
]Search in Google Scholar
[
Meng, L., Zhou, Y., Gu, L., Richardson, A.D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G.R., De Boeck, H.J., Mao, J., Zhang, Y., Wang, Zh., 2021. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming, Global Change Biology, 27: 2914–2927. https://doi.org/10.1111/gcb.15575
]Search in Google Scholar
[
Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O′Keefe, J., Richardson, A.D., 2012. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeo-sciences, 9: 2063–2083. https://doi.org/10.5194/bg-9-2063-2012
]Search in Google Scholar
[
Minin, A.A., Ananin, A.A., Buyvolov, Yu.A., Larin, E.G., Lebedev, P.A., Polikarpova, N.V., Prokosheva, I.V., Rudenko, M.I., Sapelnikova, I.I., Fedotova, V.G., Shuyskaya, E.A., Yakovleva, M.V., Yantser, O.V., 2020. Rekomendacii po unifikacii fenologicheskih nablyudenij v Rossii [Recommendations to unify phenological observations in Russia]. Nature Conservation Research, 5 (4): 89–110. https://dx.doi.org/10.24189/ncr.2020.060. (In Russian).
]Search in Google Scholar
[
Minin, A.A., Ran’kova, E.Ya., Ribina, E.G., Buyvolov, U.A., Sapel’nikova, I.I., Filatova, T.D., 2016. Fenoindikaciya izmenenij klimata za period 1976–2015 gg. v central’noj chasti Evropejskoj territorii Rossii [Phenoindication of current fluctuations in climate in the centre of the European part of Russia for the 1976–2015 years]. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem, 27 (2): 17–28. https://doi.org/10.21513/0207-2564-2016-2-17-28. (In Russian).
]Search in Google Scholar
[
Mo, Y., Li, X., Guo, Y., Fu, Y., 2023. Warming increases the differences amongst spring phenology models under future climate change. Frontiers in Plant Science, 14: 1266801. https://doi.org/10.3389/fpls.2023.1266801
]Search in Google Scholar
[
Olsson, C., Olin, S., Lindström, J., Jönsso, A.M., 2017. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Ecology and Evolution, 7: 9954–9969. https://doi.org/10.1002/ece3.3476
]Search in Google Scholar
[
Ovaskainen, O., Meyke, E., Lo, C., et al., 2020. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 7: 47. https://doi.org/10.1038/s41597-020-0376-z
]Search in Google Scholar
[
Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x
]Search in Google Scholar
[
Polgar, C., Primack, R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191: 926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x
]Search in Google Scholar
[
R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/.
]Search in Google Scholar
[
Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012
]Search in Google Scholar
[
Shvydenko, I.M., Bulat, A.G., Slyusarchuk, V.E., Nazarenko, V.V., Buhaiov, S.M., Cherkis, T.M., Stankevych, S.V., Zabrodina, I.V., Matsyura, A.V., 2021. Seasonal development of the chestnut leaf miner (Came-raria ohridella Deschka & Dimic, 1986) in the eastern forest-steppe of Ukraine. Ukrainian Journal of Ecology, 11 (2): 407–416. https://doi.org/10.15421/2021_130
]Search in Google Scholar
[
Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H., Rutishauser, Th., Busto, M., Chmielewski, F.-M., Hájková, L., Hodzić, S., Kaspar, F., Pietragalla, B., Romero-Fresneda, R., Tolvanen, A., Vučetič, V., Zimmermann, K., Zust, A., 2018. Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology, 62: 1109–1113. https://doi.org/10.1007/s00484-018-1512-8
]Search in Google Scholar
[
Wang, S., Wu, Z., Gong, Y., Wang, S., Zhang, W., Zhang, Sh., De Boeck, H.J., Fu, Y.H., 2022. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Science China Life Sciences, 65: 2316–2324. https://doi.org/10.1007/s11427-022-2094-6
]Search in Google Scholar
[
Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org.
]Search in Google Scholar
[
Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J., Ault, T.R., Bolmren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D., Cleland, E.E., 2012. Warming experiments under predict plant phenological responses to climate change. Nature, 485 (7399): 494–497. https://doi.org/10.1038/nature11014
]Search in Google Scholar
[
Zohner, C., Benito, B., Svenning, J-C., Renner, S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6: 1120–1123. https://doi.org/10.1038/nclimate3138
]Search in Google Scholar
[
Zohner, C.M., Renner, S.S., 2015. Perception of photoperi od in individual buds of mature trees regulates leaf-out. New Phytologist, 208: 1023–1030. https://doi.org/10.1111/nph.13510
]Search in Google Scholar