Acceso abierto

Spring phenological models combining the effects of temperature and photoperiod are successfully transferred to various spatial and temporal scales: a case study of Aesculus hippocastanum L.

,  y   
28 ene 2025

Cite
Descargar portada

Asse, D., Randin, Ch.F., Bonhomme, M., Delestrade, A., Chuine, I., 2020. Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 285–286: 107931. https://doi.org/10.1016/j.agrformet.2020.107931 Search in Google Scholar

Basler, D., 2016. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217: 10–21. https://doi.org/10.1016/j.agrformet.2015.11.007 Search in Google Scholar

Basler, D., Körner, C., 2012. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165: 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 Search in Google Scholar

Blümel, K., Chmielewski, F.-M., 2012. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164: 10–19. https://doi.org/10.1016/j.agrformet.2012.05.001 Search in Google Scholar

Buonaiuto, D.M., Wolkovich, E.M., 2021. Differences be tween flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 109: 2922–2933. https://doi.org/10.1111/1365-2745.13708 Search in Google Scholar

Chuine, I., 2000. A unified model for budburst of trees. Journal of Theoretical Biology, 207(3): 337–347. https://doi.org/10.1006/jtbi.2000.2178 Search in Google Scholar

Chuine, I., Kramer, K., Hänninen, H., 2003. Plant development models. In Schwartz, M.D.(eds). Phenology: an integrative environmental science. Tasks for Vegetation Science, 39. Dordrecht: Springer, p. 217–235. https://doi.org/10.1007/978-94-007-0632-3_14 Search in Google Scholar

Fazilova, N.F., 2013. Fenologiya kashtana konskogo obyknovennogo (Aesculus hippocastanum) v Uzbekistane [Phenology of horse chestnut (Aesculus hippocastanum) in Uzbekistan]. Aktualnye Napravleniya Nauchnyh Issledovanij XXI Veka: Teoriya i Praktika, 4: 134–136. (In Russian). Search in Google Scholar

Finn, G.A., Straszewski, A.E., Peterson, V., 2007. A general growth stage for describing trees and woody plants. Annals of Applied Biology, 151: 127–131. https://doi.org/10.1111/j.1744-7348.2007.00159.x Search in Google Scholar

Flynn, D.F.B., Wolkovich, E.M., 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219: 1353–1362. https://doi.org/10.1111/nph.15232 Search in Google Scholar

Forsythe, W.C., Rykiel, E.J.Jr., Stahl, R.S., Wu, H.-I., Schoolfield, R.M., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80 (1): 87–95. https://doi.org/10.1016/0304-3800(94)00034-F Search in Google Scholar

Fu, Y.H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., Janssens, I.A., 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 25: 1696–1703. https://doi.org/10.1111/gcb.14599 Search in Google Scholar

Gauzere, J., Delzon, S., Davi, H., Bonhomme, M., de Cortazar-Atauri, I.G., Chuine, I., 2017. Integrating interactive effects of chilling and photoperiod in pheno-logical process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology, 244–245: 9–20. https://doi.org/10.1016/j.agrformet.2017.05.011 Search in Google Scholar

Gauzere, J., Lucas, C., Ronce, O., Davi, H., Chuine, I., 2019. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecological Modelling, 411: 108805. https://doi.org/10.1016/j.ecolmodel.2019.108805 Search in Google Scholar

Ge, Q., Wang, H., Rutishauser, T., Dai, J., 2015. Phenological response to climate change in China: a meta-analysis, Global Change Biology, 21: 265–274. https://doi.org/10.1111/gcb.12648 Search in Google Scholar

Geng, X., Fu, Y.H., Piao, S., Hao, F., De Boeck, H.J., Zhang, X., Chen, S., Guo, Y., Prevéy, J.S., Vitasse, Y., Peñuelas, J., Janssens, I.A., Stenseth, N.Ch., 2022. Higher temperature sensitivity of flowering than leaf-out alters the time between phenophases across temperate tree species. Global Ecology and Biogeography, 31: 901–911. https://doi.org/10.1111/geb.13463 Search in Google Scholar

Hänninen, H., 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213: 1–47. https://doi.org/10.14214/aff.7660 Search in Google Scholar

Korsakova, S., Korzin, V., Plugatar, Y., Kazak, A., Gorina, V., Korzina, N., Khokhlov, S., Makoveichuk, K., 2023. Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8: 65. https://doi.org/10.3390/inventions8030065 Search in Google Scholar

Korsakova, S.P., Korsakov, P.B., Bagrikova, N.A., 2020. Climatogenic changes and forecast of blooming timing of Juniperus deltoides (Cupressaceae). Science in the South of Russia, 16 (3): 40–52. https://doi.org/10.7868/S25000640200305 Search in Google Scholar

Korzh, D.A., Trikoz, N.N., 2022. Vliyanie abioticheskih faktorov na sezonnuyu dinamiku chislennosti Cameraria ohridella Deschka & Dimic v Nikitskom Botanicheskom Sadu [The influence of abiotic factors on the seasonal dynamics of the abundance of Cameraria ohridella Deschka & Dimic in the Nikitsky Botanical Gardens]. Biologiya Rastenij i Sadovodstvo: Teoriya, Innovacii, 3 (164): 71–80. https://doi.org/10.36305/2712-7788-2022-3-164-71-80 (In Russian). Search in Google Scholar

Kuranda, Yu.V., 2021. Semennaya reprodukciya Aesculus hippocastanum L. v kollekcii barnaulskogo dendrariya [Seed reproduction of Aesculus hippocastanum L. in the collection of the Barnaul arboretum]. Trudy po Introdukcii i Akklimatizacii Rastenij, 1: 583–588. (In Russian). Search in Google Scholar

Lang, G., Early, J.D., Martin, G., Darnell. R., 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hort Science, 22: 371–377. https://doi.org/10.21273/HORTSCI.22.5.701b Search in Google Scholar

Laube, J., Sparks, T.H., Estrella, N., Höfler, J., Ankerst, D.P., Menzel, A., 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20 (1): 170–182. https://doi.org/10.1111/gcb.12360 Search in Google Scholar

Malyshev, A.V., Henry, H.A.L., Bolte, A., Arfin Khan, M.A.S., Kreyling, J., 2018. Temporal photoperiod sensitivity and forcing requirements for budburst in temperate tree seedlings. Agricultural and Forest Meteorology, 248: 82–90. https://doi.org/10.1016/j.agrformet.2017.09.011 Search in Google Scholar

Meng, L., Zhou, Y., Gu, L., Richardson, A.D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G.R., De Boeck, H.J., Mao, J., Zhang, Y., Wang, Zh., 2021. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming, Global Change Biology, 27: 2914–2927. https://doi.org/10.1111/gcb.15575 Search in Google Scholar

Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, A., O′Keefe, J., Richardson, A.D., 2012. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeo-sciences, 9: 2063–2083. https://doi.org/10.5194/bg-9-2063-2012 Search in Google Scholar

Minin, A.A., Ananin, A.A., Buyvolov, Yu.A., Larin, E.G., Lebedev, P.A., Polikarpova, N.V., Prokosheva, I.V., Rudenko, M.I., Sapelnikova, I.I., Fedotova, V.G., Shuyskaya, E.A., Yakovleva, M.V., Yantser, O.V., 2020. Rekomendacii po unifikacii fenologicheskih nablyudenij v Rossii [Recommendations to unify phenological observations in Russia]. Nature Conservation Research, 5 (4): 89–110. https://dx.doi.org/10.24189/ncr.2020.060. (In Russian). Search in Google Scholar

Minin, A.A., Rankova, E.Ya., Ribina, E.G., Buyvolov, U.A., Sapelnikova, I.I., Filatova, T.D., 2016. Fenoindikaciya izmenenij klimata za period 1976–2015 gg. v central’noj chasti Evropejskoj territorii Rossii [Phenoindication of current fluctuations in climate in the centre of the European part of Russia for the 1976–2015 years]. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem, 27 (2): 17–28. https://doi.org/10.21513/0207-2564-2016-2-17-28. (In Russian). Search in Google Scholar

Mo, Y., Li, X., Guo, Y., Fu, Y., 2023. Warming increases the differences amongst spring phenology models under future climate change. Frontiers in Plant Science, 14: 1266801. https://doi.org/10.3389/fpls.2023.1266801 Search in Google Scholar

Olsson, C., Olin, S., Lindström, J., Jönsso, A.M., 2017. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Ecology and Evolution, 7: 9954–9969. https://doi.org/10.1002/ece3.3476 Search in Google Scholar

Ovaskainen, O., Meyke, E., Lo, C., et al., 2020. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 7: 47. https://doi.org/10.1038/s41597-020-0376-z Search in Google Scholar

Parmesan, C., 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9): 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x Search in Google Scholar

Polgar, C., Primack, R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191: 926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x Search in Google Scholar

R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/. Search in Google Scholar

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 Search in Google Scholar

Shvydenko, I.M., Bulat, A.G., Slyusarchuk, V.E., Nazarenko, V.V., Buhaiov, S.M., Cherkis, T.M., Stankevych, S.V., Zabrodina, I.V., Matsyura, A.V., 2021. Seasonal development of the chestnut leaf miner (Came-raria ohridella Deschka & Dimic, 1986) in the eastern forest-steppe of Ukraine. Ukrainian Journal of Ecology, 11 (2): 407–416. https://doi.org/10.15421/2021_130 Search in Google Scholar

Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H., Rutishauser, Th., Busto, M., Chmielewski, F.-M., Hájková, L., Hodzić, S., Kaspar, F., Pietragalla, B., Romero-Fresneda, R., Tolvanen, A., Vučetič, V., Zimmermann, K., Zust, A., 2018. Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology, 62: 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 Search in Google Scholar

Wang, S., Wu, Z., Gong, Y., Wang, S., Zhang, W., Zhang, Sh., De Boeck, H.J., Fu, Y.H., 2022. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Science China Life Sciences, 65: 2316–2324. https://doi.org/10.1007/s11427-022-2094-6 Search in Google Scholar

Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org. Search in Google Scholar

Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J., Ault, T.R., Bolmren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D., Cleland, E.E., 2012. Warming experiments under predict plant phenological responses to climate change. Nature, 485 (7399): 494–497. https://doi.org/10.1038/nature11014 Search in Google Scholar

Zohner, C., Benito, B., Svenning, J-C., Renner, S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6: 1120–1123. https://doi.org/10.1038/nclimate3138 Search in Google Scholar

Zohner, C.M., Renner, S.S., 2015. Perception of photoperi od in individual buds of mature trees regulates leaf-out. New Phytologist, 208: 1023–1030. https://doi.org/10.1111/nph.13510 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Botánica, Zoología, Ecología, Ciencias de la vida, otros