Acceso abierto

Foliar iron and zinc nano-fertilizers enhance growth, mineral uptake, and antioxidant defense in date palm (Phoenix dactylifera L.) seedlings


Cite

Ahmad, I., Akhtar, M.S., 2019. Use of nanoparticles in alleviating salt stress. In Akhtar, M.S. (ed.). Salt stress, microbes, and plant interactions: causes and solution. Vol. 1. Singapore: Springer Nature Singapore. 297 p. https://doi.org/10.1007/978-981-13-8801-9 Search in Google Scholar

Ait-El-Mokhtar, M., Laouane, R. Ben, Anli, M., Boutasknit, A., Wahbi, S., Meddich, A., 2019. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253: 429–438. https://doi.org/10.1016/j.scienta.2019.04.066 Search in Google Scholar

Al-Abdoulhadi, A., Dinar, H.A, Ebert, G., Büttner, C., Al-Abdoulhadi, I.A., Dinar, H.A, Ebert, G., Büttner, C., 2012a. Influence of salinity levels on nutrient content in leaf, stem, and root of major date palm (Phoenix dactylifera L.) cultivars. International Research Journal of Agricultural Science and Soil Science, 2: 341–346. Search in Google Scholar

Al-Abdoulhadi, I.A., Dinar, H.A., Ebert, G., Büttner, C., 2012b. Influence of salinity stress on photosynthesis and chlorophyll content in date palm (Phoenix dactylifera L.) cultivars. African Journal of Agricultural Research, 7: 3314–3319. https://doi.org/10.5897/AJAR12.433 Search in Google Scholar

Aldhebiani, A.Y., Metwali, E., Soliman, H., Howladar, S.M., 2018. Response of different date palm cultivars to salinity and osmotic stresses using tissue culture technique. International Journal of Agriculture and Biology, 20:1581–1590. https://doi.org/10.17957/IJAB/15.0674 Search in Google Scholar

Al-Juthery, H.W.A., Hassan, A.H., Kareem, F.K., Musa, R.F., Khaeim, H.M., 2019. The response of wheat to foliar application of nano-micro nutrients. Plant Archives, 19: 827–831. Search in Google Scholar

Al Kharusi, L., Assaha, D.V.M., Al-Yahyai, R., Yaish, M.W., 2017. Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests, 8: 136. https://doi.org/10.3390/f8040136 Search in Google Scholar

Altemimy, H.M.A., Altemimy, I.H.H., Abed, A.M., 2019. Evaluation the efficacy of nano-fertilization and Disper osmotic in treating salinity of irrigation water in quality and productivity properties of date palm Phoenix dactylifera L. IOP Conference Series: Earth and Environmental Science, 388: 012072. https://doi.org/10.1088/1755-1315/388/1/012072 Search in Google Scholar

Amiri, H., Mousavi, M., Torahi, A., 2016. Improving date palm (Phoenix dactylifera L.) cv. estamaran calogenesis by the use of zinc oxide nanoparticles. Journal of Experimental Biology and Agricultural Sciences, 4: 557–563. https://doi.org/10.18006/2016.4(5).557.563 Search in Google Scholar

AOAC, 2005. Official methods of analysis. Association of Official Analytical Chemists, Virginia, US Chemists. 112 p. Search in Google Scholar

Aseeri, I.A., Omar, A.K., Shareef, H.J., Aly, K.M., 2021. Clean agriculture for the safe production of date. Applied Ecology and Environmental Research, 19: 3551–3561. https://doi.org/http://dx.doi.org/10.15666/aeer/1905_35513561 Search in Google Scholar

Awad, M.A., Soaud, A.A., El-Konaissi, S.M., 2006. Effect of exogenous application of anti-stress substances and elemental sulphur on growth and stress tolerance of tissue culture derived plantlets of date palm (Phoenix dactylifera L.) cv. ‘Khalas’ during acclimatization. Journal of Applied Horticulture, 8: 129–134. Search in Google Scholar

Bates, L.S., Waldren, R.P. Teare, I.D., 1973. Determination of free proline for water stress studies. Plant and Soil, 39: 205–207. https://doi.org/10.1007/BF00018060 Search in Google Scholar

Bradford, M.M., Dong, Y.Y., Xu, L., Liu, S., Bai, X., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Search in Google Scholar

Chen, J., Dou, R., Yang, Z., You, T., Gao, X., Wang, L., 2018. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 130: 604–612. https://doi.org/10.1016/j.plaphy.2018.08.019 Search in Google Scholar

Ciarmiello, L., Woodrow, P., Fuggi, A., 2011. Plant genes for abiotic stress. Abiotic stress in plants. IntechOpen. 428 p. https://doi.org/10.5772/22465 Search in Google Scholar

Da Costa, M.V.J., Sharma, P.K., 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54: 110–119. https://doi.org/10.1007/s11099-015-0167-5 Search in Google Scholar

Dadashzadeh, S., Sharifi, R.S., Salim Farzaneh, A., 2018. Physiological and biochemical responses of barley to application of bio-fertilizers and nano iron oxide under salinity stress in greenhouse. Bangladesh Journal of Botany, 47: 863–875. Search in Google Scholar

Dhawi, F., Al-Khayri, J.M., 2009. Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. The Open Agriculture Journal, 3: 1–5. https://doi.org/10.2174/1874331500903010001 Search in Google Scholar

Drissi, S., Houssa, A.A., Bamouh, A., 2016. Zinc migration in the sandy soil and its impact on the bioavailability of some nutrient in the root environment. Sains Tanah – Journal of Soil Science and Agroclimatology, 13: 9–17. Search in Google Scholar

El Rabey, H.A., Al-Malki, A.L., Abulnaja, K.O., Rohde, W., 2015. Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). International Journal of Genomics, 1: article ID 407165, 11 p. https://doi.org/10.1155/2015/407165 Search in Google Scholar

Elsakhawy, T., Omara, A. E.-D., Alshaal, T., El-Ramady, H., Ghazi, A., El-Nahrawy, S., Elhawat, N., 2018. Nanomaterials and plant abiotic stress in agroecosystems. Environment, Biodiversity and Soil Security, 2: 50–55. https://doi.org/10.21608/jenvbs.2018.3897.1030 Search in Google Scholar

Fathi, A., Zahedi, M., Torabian, S., Khoshgoftar, A., 2017. Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition, 40: 1376–1385. https://doi.org/10.1080/01904167.2016.1262418 Search in Google Scholar

Haider, M.S., Khan, I.A., Jaskani, M.J., Naqvi, S.A., 2015. Assessment of morphological attributes of date palm accessions of diverse agro-ecological origin. Pakistan Journal of Botany, 47: 1143–1151. Search in Google Scholar

Hasanuzzaman, M., Hossain, M.A., Da Silva, J.A.T., Fujita, M., 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M. (eds). Crop stress and its management: perspectives and strategies. Dordrecht: Springer Science +Business Media B.V., p. 261–314 2012. https://doi.org/10.1007/978-94-007-2220-0 Search in Google Scholar

Hasanuzzaman, M., Raihan, M.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., Fujita, M., 2021. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22: 9326. https://doi.org/10.3390/ijms22179326 Search in Google Scholar

Havir, E.A., Mchale, N.A., 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84: 450–455. https://doi.org/10.1104/pp.84.2.450 Search in Google Scholar

Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189–198. Search in Google Scholar

Hilo, A., Shahinnia, F., Druege, U., Franken, P., Melzer, M., Rutten, T., Von Wirén, N., Hajirezaei, M.R., 2017. A specific role of iron in promoting meristematic cell division during adventitious root formation. Journal of Experimental Botany, 68: 4233–4247. https://doi.org/10.1093/jxb/erx248 Search in Google Scholar

Hussein, M.M., Abou-Baker, N.H., 2018.The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science, 5: 171809. https://doi.org/10.1098/rsos.171809 Search in Google Scholar

Jana, G.A., Al Kharusi, L., Sunkar, R., Al-Yahyai, R., Yaish, M.W., 2019. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signaling and Behavior, 14 (11): e1663112. https://doi.org/10.1080/15592324.2019.1663112 Search in Google Scholar

Juárez-Maldonado, A., Ortega-Ortíz, H., Morales-Díaz, A.B., González-Morales, S., Morelos-Moreno, Á., Cabrera-De La Fuente, M., Sandoval-Rangel, A., Cadenas-Pliego, G., Benavides-Mendoza, A., 2019. Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences, 20: 162, 19 p. https://doi.org/10.3390/ijms20010162 Search in Google Scholar

Jubeir, S.M., Ahmed, W.A., 2019. Effect of nanofertilizers and application methods on vegetative growth and yield of date palm. Iraqi Journal of Agricultural Sciences, 50: 267–274. Search in Google Scholar

Kanwal, U., Ali, S., Shakoor, M.B., Farid, M., Hussain, S., Yasmeen, T., Adrees, M., Bharwana, S.A., Abbas, F., 2014. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research, 21: 9899–9910. https://doi.org/10.1007/s11356-014-3001-x Search in Google Scholar

Kaushik, S., Djiwanti, S.R., 2019. Nanofertilizers: smart delivery of plant nutrients. In Panpatte, D.G., Jhala, Y.K. (eds). Nanofertilizers: smart delivery of plant nutirents. Singapore: Springer Nature Singapore, p. 59–72. Search in Google Scholar

Kurup, S.S., Hedar, Y.S., Al Dhaheri, M.A., El-Heawiety, A.Y., Aly, M.A.M., Alhadrami, G., 2009. Morpho-physiological evaluation and RAPD markers-assisted characterization of date palm (Phoenix dactylifera L.) varieties for salinity tolerance. Journal of Food, Agriculture and Environment, 7: 503–507. Search in Google Scholar

Lachowiec, J., Queitsch, C., Kliebenstein, D.J., 2016. Molecular mechanisms governing differential robustness of development and environmental responses in plants. Annals of Botany, 117: 795–809. https://doi.org/10.1093/aob/mcv151 Search in Google Scholar

Lutts, S., Kinet, J.M., Bouharmont, J., 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46: 1843–1852. https://doi.org/10.1093/jxb/46.12.1843 Search in Google Scholar

Mahil, I.E., Kumar, A., 2019. Foliar application of nano-fertilizers in agricultural crops – A review. Journal of Farm Sciences,32: 239–249. Search in Google Scholar

Mbarki, S., Skalicky, M., Vachova, P., Hajihashemi, S., Jouini, L., Zivcak, M., Tlustos, P., Brestic, M., Hejnak, V., Khelil, A.Z., 2020. Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants, 9: 526. https://doi.org/10.3390/plants9040526 Search in Google Scholar

Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., Aparicio-Tejo, P., 1994. Drought induces oxidative stress in pea plants. Planta, 194: 346–352. https://doi.org/10.1007/BF00197534 Search in Google Scholar

Morsy, N.M., Shams, A.S., Abdel-Salam, M.A. 2017. Zinc foliar spray on snap beans using nano-Zn with N-soil application using mineral, organic and biofertilizer. Middle East Journal of Agriculture Research, 6: 1301–1312. Search in Google Scholar

Nakano, Y., Asada, K., 1980. Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology, 21: 1295–1307. https://doi.org/10.1093/oxfordjournals.pcp.a076128 Search in Google Scholar

Naser, H.M., Hanan, E.H., Elsheery, N.I., Kalaji, H.M., 2016. Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera L.) grown on reclaimed-salinized soil. Trees – Structure and Function, 30: 1149–1161. https://doi.org/10.1007/s00468-016-1353-1 Search in Google Scholar

Navarro, E., Baun, A., Behra, R., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372–386. https://doi.org/10.1007/s10646-008-0214-0 Search in Google Scholar

Nongbet, A., Mishra, A.K., Mohanta, Y.K., Mahanta, S., Ray, M.K., Khan, M., Baek, K.H., Chakrabartty, I., 2022. Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants, 11: 2587, 20 p. https://doi.org/10.3390/plants11192587 Search in Google Scholar

Parvin, S., Lee, O.R., Sathiyaraj, G., Khorolragchaa, A., Kim, Y. J., Yang, D.C., 2014. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 537: 70–78. https://doi.org/10.1016/j.gene.2013.12.021 Search in Google Scholar

Peralta-Videa, J.R., Hernandez-Viezcas, J.A., Zhao, L., 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry, 80: 128–135. https://doi.org/10.1016/j.plaphy.2014.03.028 Search in Google Scholar

Rajaie, M., Tavakoly, A.R., 2017. Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. Journal of Plant Nutrition, 41: 151–158. https://doi.org/10.1080/01904167.2017.1382523 Search in Google Scholar

Rao, M.V., Paliyath, G., Ormrod, D.P., 1996. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110: 125–136. https://doi.org/10.1104/pp.110.1.125 Search in Google Scholar

Ressan, S.H., Al-Tememi, H.H., 2019. Study of evaluating the efficiency of biological and Nano-fertilizers treatments and their addition methods in some the physiological and productive characteristics of date palm Phoenix dactylifera L. Basrah Journal for Date Palm Research, 18: 84–101. Search in Google Scholar

Rout, G.R., Sahoo, S., 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3: 1–24. https://doi.org/10.7831/ras.3.1 Search in Google Scholar

Saleh, J., 2008. Yield and chemical composition of “Piarom” date palm as affected by levels and methods of iron fertilization. International Journal of Plant Production, 2: 207–214. DOI: 10.22069/ijpp.2012.613 Search in Google Scholar

Shareef, H.J., 2019. Salicylic acid and potassium nitrate promote flowering through modulating the hormonal levels and protein pattern of date palm Phoenix dactylifera “Sayer” offshoot. Acta Agriculturae Slovenica, 114: 231–238. https://doi.org/10.14720/aas.2019.114.2.8 Search in Google Scholar

Shareef, H.J., 2020. Organic fertilizer modulates IAA and ABA levels and biochemical reactions of date palm Phoenix dactylifera L. Hillawi cultivar under salinity conditions. Asian Journal of Agriculture and Biology, 8: 24–30. https://doi.org/10.35495/ajab.2019.02.062 Search in Google Scholar

Shareef, H.J., Abdi, G., Fahad, S., 2020. Change in photo synthetic pigments of Date palm offshoots under abiotic stress factors. Folia Oecologica, 47: 45–51. https://doi.org/10.2478/foecol-2020-0006 Search in Google Scholar

Shareef, H.J., Alhamd, A.S., Naqvi, S.A., Eissa, M.A. 2021. Adapting date palm offshoots to long-term irrigation using groundwater in sandy soil. Folia Oecologica, 48: 55–62. https://doi.org/10.2478/foecol-2021-0007 Search in Google Scholar

Shareef, H.J., Al-Khayri, J.M., 2021. Salt and drought stress exhibits oxidative stress and modulated protein patterns in roots and leaves of date palm (Phoenix dactylifera L.). Acta Agriculturae Slovenica, 117: 1–10. https://doi.org/10.14720/aas.2021.117.1.1829 Search in Google Scholar

Shareef, H.J., AL-Tememi, I.H., Abdi, G., 2021. Foliar nutrition of date palm: advances and applications. A review. Folia Oecologica, 48: 82–100. https://doi.org/10.2478/foecol-2021-0010 Search in Google Scholar

Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001 Search in Google Scholar

Sun, H., Feng, F., Liu, J., Zhao, Q., 2017. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Frontiers in Plant Science, 8: 2169, 14 p. https://doi.org/10.3389/fpls.2017.02169 Search in Google Scholar

Tang, Y., Wang, L., Ma, C., Liu, J., Liu, B., Li, H., 2011. The use of HPLC in determination of endogenous ormones in anthers of bitter melon. Journal of Life Sciences, 5: 139–142. Search in Google Scholar

Tripler, E., Shani, U., Mualem, Y., Ben-Gal, A., 2011. Long-term growth, water consumption and yield of date palm as a function of salinity. Agricultural Water Management, 99: 128–134. https://doi.org/10.1016/j.agwat.2011.06.010 Search in Google Scholar

Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R.K., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M., Sharma, S., 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science, 8: 161, 12 p. https://doi.org/10.3389/fpls.2017.00161 Search in Google Scholar

Wani, A.S., Ahmad, A., Hayat, S., Tahir, I., 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135: 385–394. https://doi.org/10.1016/j.plaphy.2019.01.002 Search in Google Scholar

Yassen, A., Abdallah, E., Gaballah, M., Zaghloul, S., 2017. Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). International Journal of Agricultural Research, 12: 130–135. https://doi.org/10.3923/ijar.2017.130.135 Search in Google Scholar

Youssef, T., Awad, M.A., 2008. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. Journal of Plant Growth Regulation, 27: 1–9. https://doi.org/10.1007/s00344-007-9025-4 Search in Google Scholar

Zagzog, O. A., Gad, M., 2017. Improving growth, flowering, fruiting and resistance of malformation of mango trees using nano-zinc. Middle East Journal of Agriculture Research, 6: 673–681. Search in Google Scholar

Zouari, M., Ben Ahmed, C., Zorrig, W., Elloumi, N., Rabhi, M., Delmail, D., Ben Rouina, B., Labrousse, P., Ben Abdallah, F., 2016. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology and Environmental Safety, 128: 100–108. https://doi.org/10.1016/j.ecoenv.2016.02.015 Search in Google Scholar

eISSN:
1338-7014
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Plant Science, Zoology, Ecology