Weibull or Lognormal Distribution to Characterize Fatigue Life Scatter – Which is More Suitable? – Continued
07 jul 2025
Acerca de este artículo
Categoría del artículo: Research Article
Publicado en línea: 07 jul 2025
DOI: https://doi.org/10.2478/fas-2024-0011
Palabras clave
© 2025 Rob Plaskitt et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Fatigue test results in Kilo Cycles (specimen number)_
636 (13G) | 1160 (13J) | 1461 (12F) |
707 (13H) | 1167 (12H) | 1511 (13C) |
801 (13K) | 1262 (13A) | 2119 (12C) |
1038 (12K) | 1265 (13B) | 2132 (13D) |
1090 (13E) | 1404 (12G) | 2158 (12D) |
1102 (12J) | 1418 (13F) | 2368 (12E) |
Extrapolated fatigue life normalised to γ (gamma) at probability of failure (reliability)_
% Probability of failure (% reliability) | Lognormal | 2-parameter Weibull | 3-parameter Weibull |
---|---|---|---|
1% (99%) | 1.383 | 0.786 | 1.293 |
0.1% (99.9%) | 0.584 | 0.130 | 1.029 |
0.01% (99.99%) | 0.288 | 0.022 | 1.003 |
0.001% (99.999%) | 0.155 | 0.004 | 1.000 |
0.0001% (99.9999%) | 0.089 | 0.001 | 1.000 |
Extrapolated fatigue life (Kilo Cycles) at probability of failure at 0_01% (=99_99% reliability)_
Distribution | ||
---|---|---|
Weibull | 86 | 86.3 |
Lognormal | 300 | 303.4 |
Extrapolated fatigue life normalised to γ(gamma) at probability of failure (reliability)_
% Probability of failure (% reliability) | Lognormal | 2-parameter Weibull | 3-parameter Weibull |
---|---|---|---|
1% (99%) | 1.036 | 0.723 | 1.157 |
0.1% (99.9%) | 0.770 | 0.352 | 1.044 |
0.01% (99.99%) | 0.603 | 0.171 | 1.013 |
0.001% (99.999%) | 0.487 | 0.084 | 1.004 |
0.0001% (99.9999%) | 0.403 | 0.041 | 1.001 |
Extrapolated fatigue life (Kilo Cycles) at probability of failure (reliability)_
% Probability of failure (% reliability) | Lognormal | 2-parameter Weibull | 3-parameter Weibull |
---|---|---|---|
1% (99%) | 521.7 | 363.8 | 582.5 |
0.1% (99.9%) | 387.5 | 177.1 | 525.7 |
0.01% (99.99%) | 303.4 | 86.3 | 509.7 |
0.001% (99.999%) | 245.3 | 42.1 | 505.2 |
0.0001% (99.9999%) | 202.8 | 20.5 | 503.9 |