Acceso abierto

Weibull or Lognormal Distribution to Characterize Fatigue Life Scatter – Which is More Suitable? – Continued

,  y   
07 jul 2025

Cite
Descargar portada

Figure 1.

Lognormal and 3-parameter Weibull distribution of Schijve dataset fatigue test results a) reproduced from Schijve (2009, figure 12.3), and b) reanalysis for this paper.
Lognormal and 3-parameter Weibull distribution of Schijve dataset fatigue test results a) reproduced from Schijve (2009, figure 12.3), and b) reanalysis for this paper.

Figure 2.

2-parameter Weibull distribution of Schijve dataset fatigue test results a) reproduced from Brot (2017, figure 18), and b) reanalysis for this paper.
2-parameter Weibull distribution of Schijve dataset fatigue test results a) reproduced from Brot (2017, figure 18), and b) reanalysis for this paper.

Figure 3.

Lognormal distribution of Schijve dataset fatigue test results a) reproduced from Brot (2017, figure 19), and b) reanalysis for this paper.
Lognormal distribution of Schijve dataset fatigue test results a) reproduced from Brot (2017, figure 19), and b) reanalysis for this paper.

Figure 4.

Lognormal and Weibull distribution of Schijve dataset fatigue test results a) with 3-parameter Weibull as used in Schijve analysis (2009), and b) with 2-parameter Weibull as used in Brot analysis in (2017).
Lognormal and Weibull distribution of Schijve dataset fatigue test results a) with 3-parameter Weibull as used in Schijve analysis (2009), and b) with 2-parameter Weibull as used in Brot analysis in (2017).

Figure 5.

Lognormal and 2- and 3-parameter Weibull distributions of HBK dataset (logarithmic x-axis with numbers excluded to maintain data confidentiality).
Lognormal and 2- and 3-parameter Weibull distributions of HBK dataset (logarithmic x-axis with numbers excluded to maintain data confidentiality).

Figure 6.

Lognormal and 2- and 3-parameter Weibull distributions of HBK dataset with confidence bounds for the lower tail of the distributions between 0.01% and 50% (logarithmic x-axis with numbers excluded to maintain data confidentiality).
Lognormal and 2- and 3-parameter Weibull distributions of HBK dataset with confidence bounds for the lower tail of the distributions between 0.01% and 50% (logarithmic x-axis with numbers excluded to maintain data confidentiality).

Fatigue test results in Kilo Cycles (specimen number)_

636 (13G) 1160 (13J) 1461 (12F)
707 (13H) 1167 (12H) 1511 (13C)
801 (13K) 1262 (13A) 2119 (12C)
1038 (12K) 1265 (13B) 2132 (13D)
1090 (13E) 1404 (12G) 2158 (12D)
1102 (12J) 1418 (13F) 2368 (12E)

Extrapolated fatigue life normalised to γ (gamma) at probability of failure (reliability)_

% Probability of failure (% reliability) Lognormal 2-parameter Weibull 3-parameter Weibull
1% (99%) 1.383 0.786 1.293
0.1% (99.9%) 0.584 0.130 1.029
0.01% (99.99%) 0.288 0.022 1.003
0.001% (99.999%) 0.155 0.004 1.000
0.0001% (99.9999%) 0.089 0.001 1.000

Extrapolated fatigue life (Kilo Cycles) at probability of failure at 0_01% (=99_99% reliability)_

Distribution Figure 2a distribution fit Figure 2b distribution fit
Weibull 86 86.3
Lognormal 300 303.4

Extrapolated fatigue life normalised to γ(gamma) at probability of failure (reliability)_

% Probability of failure (% reliability) Lognormal 2-parameter Weibull 3-parameter Weibull
1% (99%) 1.036 0.723 1.157
0.1% (99.9%) 0.770 0.352 1.044
0.01% (99.99%) 0.603 0.171 1.013
0.001% (99.999%) 0.487 0.084 1.004
0.0001% (99.9999%) 0.403 0.041 1.001

Extrapolated fatigue life (Kilo Cycles) at probability of failure (reliability)_

% Probability of failure (% reliability) Lognormal 2-parameter Weibull 3-parameter Weibull γ (gamma) = 503.4
1% (99%) 521.7 363.8 582.5
0.1% (99.9%) 387.5 177.1 525.7
0.01% (99.99%) 303.4 86.3 509.7
0.001% (99.999%) 245.3 42.1 505.2
0.0001% (99.9999%) 202.8 20.5 503.9
Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros