Cite

[1] Findlay, S. J. and Harrison, N. D. (2002). Why aircraft fail. Materials Today, 5(11), pp. 18–25. https://doi.org/10.1016/S1369-7021(02)01138-0.10.1016/S1369-7021(02)01138-0 Search in Google Scholar

[2] Schijve, J. (2009). Fatigue damage in aircraft structures, not wanted, but tolerated?, International Journal of Fatigue, 31(6), pp. 998–1011. https://doi.org/10.1016/j.ijfatigue.2008.05.016.10.1016/j.ijfatigue.2008.05.016 Search in Google Scholar

[3] Ansell, H. (2015). Structural Integrity Assessment of Gripen NG Aircraft, in Proceedings 28th ICAF Symposium–Helsinki, Helsinki, pp. 610–624. Search in Google Scholar

[4] Tsukigase, K., Fukuoka, T., Kumagai, K., Nakamura, T. and Taba, S. (2015). Curved Panel Fatigue Test for MRJ-200 Pressurized Cabin Structure, in Proceedings 28th ICAF Symposium–Helsinki, Helsinki, pp. 276–286. Search in Google Scholar

[5] Leski, A., Kurdelski, M., Reymer, P., Dragan, K. and Sałaciński, M. (2015). Fatigue Life Assessment of PZL-130 Orlik Structure – Final Analysis and Results, in Proceedings 28th ICAF Symposium–Helsinki, Helsinki, pp. 294–303. Search in Google Scholar

[6] Brzęczek, J., Gruszecki, H., Pieróg, L. and Pietruszka, J. (2014). Selected Aspects Related to Preparation of a Fatigue Test Plan of a Metallic Airframe. Fatigue of Aircraft Structures, 2014(6), pp. 88–94, https://doi.org/10.1515/fas-2014-0008.10.1515/fas-2014-0008 Search in Google Scholar

[7] Rośkowicz, M. and Leszczyński, P. (2017). Evaluation of the Suitability of the Strain-Gauge Method for Measuring Deformations during the Fatigue Tests of Aviation Composite Structures. Fatigue of Aircraft Structures, 2017(9), pp. 75–84. https://doi.org/10.1515/fas-2017-0006.10.1515/fas-2017-0006 Search in Google Scholar

[8] Uchanin, V. (2020). Detection of the Fatigue Cracks Initiated near the Rivet Holes by Eddy Current Inspection Techniques, Transactions on Aerospace Research, 2(259), pp. 47–58. https://doi.org/10.2478/tar-2020-0010.10.2478/tar-2020-0010 Search in Google Scholar

[9] Leski, A., Szmidt, M. and Wronicz, W. (2019). The modular test stand for fatigue testing of aeronautical structures – Design phase, AIP Conference Proceedings, 2078(1), p. 020021. https://doi.org/10.1063/1.5092024.10.1063/1.5092024 Search in Google Scholar

[10] Leski, A., Wronicz, W., Kowalczyk, P. and Szmidt, M. (2020). Conception of Modular Test Stand for Fatigue Testing of Aeronautical Structures. In: Niepokolczycki A., Komorowski J. (eds) ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. ICAF 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21503-3_59.10.1007/978-3-030-21503-3_59 Search in Google Scholar

[11] Sutton, M. A., Orteu, J. J. and Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media. Search in Google Scholar

[12] Bajurko, P. (2019). Modelling of the Aerospace Structure Demonstrator Subcomponent, Transactions on Aerospace Research, 1(254), pp. 37–52. https://doi.org/10.2478/tar-2019-0004.10.2478/tar-2019-0004 Search in Google Scholar

[13] Łukasiewicz Research Network ‒ Institute of Aviation. Completion of tests of the ILX-34 wing box demonstrator. Jul. 12, 2019. From https://ilot.lukasiewicz.gov.pl/en/completion-of-tests-of-the-ilx-34-wing-box-demonstrator/ Search in Google Scholar

eISSN:
2300-7591
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Engineering, Introductions and Overviews, other