Cite

Acosta-Milch L., Lucht W., Bondeau A., Beringer T. 2011. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renewable and Sustainable Energy Reviews, 15: 2791–2809.Search in Google Scholar

Aguilar Rivera N., Galindo Mendoza M.G., Contreras Servín C., Fortanelli Martínez J. 2012. A methodological approach to sugar mill diversification and conversion. Ingeniería e Investigación, 32, 2: 23–27.Search in Google Scholar

Aguilar-Rivera N. 2014. Diversification index of the sugar agroindustry in Mexico Agricultura, sociedad y desarrollo, 11, 4: 441–462.Search in Google Scholar

Alckmin-Governor G., Goldemberg-Secretary J. 2004. Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Government of the State of São Paulo.Search in Google Scholar

Alemán-Nava G.S., Meneses-Jácome A., Cárdenas-Chávez D.L., Díaz-Chavez R., Scarlat N., Dallemand J.F., Ornelas-Soto N., García-Arrazola R., Parra R. 2015. Bioenergy in Mexico: Status and perspective. Biofuels, Bioproducts and Biorefining, 9, 1: 8–20.Search in Google Scholar

Amaya A. 2010. Sugarcane research and technology transfer—strategies for the next decade. Proceedings – International Society of Sugar Cane Technologists, 27.Search in Google Scholar

Azapagic A., Perdan S. 2000. Indicators of sustainable development for industry: a general framework. Process Safety and Environmental Protection, 78, 4: 243–261.Search in Google Scholar

Barrera I., Amezcua-Allieri M.A., Estupiñan L., Martínez T., Aburto J. 2016. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses. Chemical Engineering Research and Design, 107: 91–101.Search in Google Scholar

Bechara R., Gomez A., Saint-Antonin V., Schweitzer J.M., Maréchal F., Ensinas A. 2018. Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity. Renewable and Sustainable Energy Reviews, 91: 152–164.Search in Google Scholar

Brambila-Paz J.D.J., Martínez-Damián M.Á., Rojas-Rojas M.M., Perez-Cerecedo V. 2013. Real options, biorefineries and bioeconomy: the case of bioethanol and sugar. Agrociencia, 47, 3: 281–292.Search in Google Scholar

Brown D.G., Verburg P.H., Pontius R.G., Lange M.D. 2013. Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 5, 5: 452–457.Search in Google Scholar

Buchholz T.S., Volk T.A., Luzadis V.A. 2007. A participatory systems approach to modeling social, economic and ecological components of bioenergy. Energy Policy, 35: 6084–6094.Search in Google Scholar

Büyüközkan G., Karabulut Y. 2018. Sustainability performance evaluation: Literature review and future directions. Journal of Environmental Management, 217: 253–267.Search in Google Scholar

Cardoso T.F., Watanabe M.D., Souza A., Chagas M.F., Cavalett O., Morais E.R., Bonomi A. 2018. Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 12, 1: 68-82.Search in Google Scholar

Cavalett O., Junqueira T.L., Dias M.O.S., Jesus C.D.F., Mantelatto P.E., Cunha M.P., Franco H.C.J., Cardoso T.F., Filho R.M., Rossell C.E.V., Bonomi A., 2011. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy, 14: 399–410.10.1007/s10098-011-0424-7Search in Google Scholar

Chauhan M.K., Chaudhary S., Kumar S. 2011. Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15, 7: 3445–3453.Search in Google Scholar

Chávez-Rodríguez M.F., Nebra S.A. 2010. Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels. Environmental Science & Technology, 44: 9252–9257.Search in Google Scholar

Ciegis R., Ramanauskiene J., Startiene G. 2015. Theoretical reasoning of the use of indicators and indices for sustainable development assessment. Engineering Economics, 63, 4: 33–40.Search in Google Scholar

Cobuloglu H.I., Büyüktahtakın İ.E. 2015. A stochastic multi-criteria decision analysis for sustainable biomass crop selection. Expert Systems with Applications, 42, 15: 6065–6074.Search in Google Scholar

Conadesuca. 2015. Sistema de Información de Costos de Producción de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca. México.Search in Google Scholar

Conadesuca. 2018. Sistema de Información de Costos de Producción de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca. México.Search in Google Scholar

Contreras A.M., Rosa E., Pérez M., Van Langenhove H., Dewulf J. 2009. Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. Journal of Cleaner Production, 17, 8: 772–779.Search in Google Scholar

de Oliveira Neto G.C., Pinto L.F.R., Amorim M.P.C., Giannetti B.F., de Almeida C.M.V.B. 2018. A framework of actions for strong sustainability. Journal of Cleaner Production. 196: 1629–1643.10.1016/j.jclepro.2018.06.067Search in Google Scholar

Eggleston G., Lima I. 2015. Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability, 7, 9: 12209–12235.Search in Google Scholar

Elghali L., Clift R., Sinclair P., Panoutsou C., Bauen A. 2007. Developing a sustainability framework for the assessment of bioenergy systems. Energy Policy, 35: 6075–6083.Search in Google Scholar

FAO (Food and Agriculture Organization). CROPWAT model (Online). Available at: http://www.fao.org/nr/water/infores_databases_cropwat.html. 2014a.Search in Google Scholar

FAO. CLIMWAT for CROPWAT. Available at: http://www.fao.org/nr/water.2014b.Search in Google Scholar

Fingerman K.R., Torn M.S., O’Hare M.H., Kammen D.M. 2010. Accounting for the water impacts of ethanol production. Environmental Research Letters, 5: 014020 7.Search in Google Scholar

Finguerut J. 2010. Sustainability in sugarcane processing in Brazil. Proceedings – International Society of Sugar Cane Technologists, 27.Search in Google Scholar

Gan X., Fernandez I.C., Guo J., Wilson M., Zhao Y., Zhou B., Wu J. 2017. When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81: 491–502.Search in Google Scholar

Gani F.Q., Hantoro R. 2018. An ANP (Analytic Network Process)-based Multi-Criteria Decision Approach for The Selection of Sugar-Cane Industry Development. IPTEK Journal of Proceedings Series, 1: 54–58.Search in Google Scholar

García C.A., Fuentes A., Hennecke A., Riegelhaupt E., Manzini F., Masera O. 2011. Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Applied Energy, 88: 2088–2097.Search in Google Scholar

García C.A., García-Treviño E.S., Aguilar-Rivera N., Armendáriz C. 2016. Carbon footprint of sugar production in Mexico. Journal of Cleaner Production, 112: 2632–2641.Search in Google Scholar

Gasparatos A., Scolobig A. 2012. Choosing the most appropriate sustainability assessment tool. Ecological Economics, 80: 1–7.Search in Google Scholar

Gnansounou E., Alves C.M., Pachón E.R., Vaskan P. 2017. Comparative assessment of selected sugarcane biorefinery-centered systems in Brazil: A multi-criteria method based on sustainability indicators. Bioresource technology, 243: 600–610.10.1016/j.biortech.2017.07.00428704740Search in Google Scholar

Goldemberg J. Teixeira C.S., Guardabassi P. 2008. The sustainability of ethanol production from sugarcane. Energy Policy, 35: 2086–2097.Search in Google Scholar

Grigoletto-Duarte C., Gaudreau K., Gibson R.B., Malheiros T.F. 2013. Sustainability assessment of sugarcane-ethanol production in Brazil: A case study of a sugarcane mill in Sao Paulo state. Ecological Indicators, 30: 119–129.Search in Google Scholar

Gulisano G., Strano A., De Luca A.I., Falcone G., Iofrida N., Stillitano T. 2018. Evaluating the Environmental, Economic, and Social Sustainability of Agro-Food Systems through Life Cycle Approaches. Sustainable Food Systems from Agriculture to Industry: 123–152.Search in Google Scholar

Heinrichs R., Otto R., Magalhães A., Meirelles G.C. 2017. Importance of Sugarcane in Brazilian and World Bioeconomy. [in:] S. Dabbert, I. Lewandowski, J. Weiss, A. Pyka (eds) Knowledge-Driven Developments in the Bioeconomy. Springer, Cham: 205–217.Search in Google Scholar

Hoekstra A., Chapagain A. 2008. Globalization of Water: Sharing the Planet’s Freshwater Resources. Blackwell Publishing.Search in Google Scholar

Ingaramo A., Heluane H., Colombo M., Cesca M. 2009. Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 17, 4: 487–495.Search in Google Scholar

Ishizaka A., Labib A. 2009. Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight, 22, 4: 201–220.Search in Google Scholar

Ishizaka A., Labib A. 2011. Review of the main developments in the analytic hierarchy process. Expert systems with applications, 38, 11: 14336–14345.Search in Google Scholar

Klimiuk E., Pawłowski A. 2016. Biofuels and sustainable development. [in:] Biomass for Biofuels. CRC Press: 11–22.10.1201/9781315226422-6Search in Google Scholar

Lang T., Schoen V., Hashem K., McDonald L., Parker J., Savelyeva A. 2017. The Environmental, Social, and Market Sustainability of Sugar. [in:] D. Barling (ed.) Advances in Food Security and Sustainability, 2, Elsevier: 115–136.Search in Google Scholar

Leal M.R.L., Nogueira L.A.H., Cortez L.A. 2013. Land demand for ethanol production. Applied Energy, 102: 266–271.Search in Google Scholar

Linnenluecke M.K., Nucifora N., Thompson N. 2018. Implications of climate change for the sugarcane industry. Wiley Interdisciplinary Reviews: Climate Change, 9, 1: e498.Search in Google Scholar

Liu G. 2014. Development of a general sustainability indicator for renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 31: 611–621.Search in Google Scholar

Martínez-Guido S.I., González-Campos J.B., Ponce-Ortega J.M., Nápoles-Rivera F., El-Halwagi M.M. 2015. Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technologies and Environmental Policy: 1–10.10.1007/s10098-015-1039-1Search in Google Scholar

Mekonnen M.M., Hoekstra A.Y. 2011. The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15, 5: 1577–1600.Search in Google Scholar

Moncada J., El-Halwagi M.M., Cardona C.A. 2013. Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresource technology, 135: 533–543.Search in Google Scholar

Mugica-Álvarez V., Hernández-Rosas F., Magaña-Reyes M., Herrera-Murillo J., Santiago-De La Rosa N., Gutiérrez-Arzaluz M., González-Cardoso G. 2018. Sugarcane burning emissions: Characterization and emission factors. Atmospheric Environment, 193: 262–272.Search in Google Scholar

Mugica-Alvarez V., Santiago de la Rosa N., Figueroa-Lara J., Flores-Rodríguez J., Torres-Rodríguez M., Magaña-Reyes M., 2015. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México. Science of the Total Environment, 527: 474–482.10.1016/j.scitotenv.2015.04.08925984704Search in Google Scholar

Munda G. 2016. Multiple Criteria Decision Analysis and Sustainable Development. [in:] S. Greco (ed.) Multiple Criteria Decision Analysis, Springer, New York: 1235–1267.Search in Google Scholar

Nardo M., Saisana M., Saltelli A., Tarantola S., Hoffman A., Giovannini E. 2005. Handbook on constructing composite indicators. OECD Statistics Working Paper.Search in Google Scholar

Neumayer E. 2001. The human development index and sustainability—a constructive proposal. Ecological Economics, 39, 1: 101–114.Search in Google Scholar

Nguyen T.L.T., Gheewala S.H., Garivait S. 2008. Full chain energy analysis of fuel ethanol from cane molasses in Thailand. Applied Energy. 85: 722–734.10.1016/j.apenergy.2008.02.002Search in Google Scholar

Nguyen T.T., Kikuchi Y., Noda M., Hirao M. 2015. A New Approach for the Design and Assessment of Bio-based Chemical Processes toward Sustainability. Industrial & Engineering Chemistry Research, 54, 20: 5494–5504.Search in Google Scholar

Nikodinoska N., Mattivi M., Notaro S., Paletto A. 2015. Stakeholders’ appraisal of biomass-based energy development at local scale. Journal of Renewable and Sustainable Energy, 7, 2: 023117.Search in Google Scholar

Pereira C.L.F., Ortega E. 2010. Sustainability assessment of large-scale ethanol production from sugarcane. Journal of Cleaner Production, 18: 77–82.Search in Google Scholar

Ramankutty N., Mehrabi Z., Waha K., Jarvis L., Kremen C., Herrero M., Rieseberg L.H. 2018. Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology, 69: 789–815.Search in Google Scholar

Rathore D., Nizami A.S., Singh A., Pant D. 2016. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3, 2: 380–393.Search in Google Scholar

Renouf M.A., Pagan R.J., Wegener M.K., 2013. Bio-production from Australian sugarcane: an environmental investigation of product diversification in an agro-industry. Journal of Cleaner Production, 39: 87–96.10.1016/j.jclepro.2012.08.036Search in Google Scholar

Rincón L.E., Becerra L.A., Moncada J., Cardona C.A. 2014. Techno-Economic Analysis of the Use of Fired Cogeneration Systems Based on Sugar Cane Bagasse in South Eastern and Mid-Western Regions of Mexico. Waste Biomass Valorization, 5: 189–198.10.1007/s12649-013-9224-0Search in Google Scholar

Rockström J., Steffen W., Noone K., Persson Å., Chapin III F.S., Lambin E.F., Nykvist B. 2009. A safe operating space for humanity. Nature, 461: 472–475.Search in Google Scholar

Saaty T.L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48, 1: 9–26.Search in Google Scholar

Saaty T.L. 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1, 1: 83–98.Search in Google Scholar

Saaty T.L. 2013. The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Operations Research, 61, 5: 1101–1118.Search in Google Scholar

Santillán-Fernández A., Santoyo-Cortés V.H., García-Chávez L.R., Covarrubias-Gutiérrez I., Merino A. 2016. Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems, 143: 126–135.Search in Google Scholar

Santoyo-Castelazo E., Azapagic A. 2014. Sustainability assessment of energy systems: integrating environmental, economic and social aspects. Journal of Cleaner Production, 80: 119–138.Search in Google Scholar

Sarker T.C., Azam S.M.G.G., Bonanomi G. 2017. Recent advances in sugarcane industry solid by-products valorization. Waste and Biomass Valorization, 8, 2: 241–266.Search in Google Scholar

Schaidle J.A., Moline C.J., Savage P.E. 2011. Biorefinery sustainability assessment. Environmental Progress & Sustainable Energy, 30, 4: 743–753.Search in Google Scholar

Schmitz T.G., Lewis K.E. 2015. Impact of NAFTA on US and Mexican Sugar Markets. Journal of Agricultural and Resource Economics, 40, 3: 387–404.Search in Google Scholar

Sentíes-Herrera H.E., Gómez-Merino F.C., Valdez-Balero A., Silva-Rojas H.V., Trejo-Téllez L.I. 2014. The Agro-Industrial Sugarcane System in Mexico: Current Status, Challenges and Opportunities. Journal of Agricultural Science, 6, 4: 26–54.Search in Google Scholar

Sentíes-Herrera H.E., Trejo-Téllez L.I., Gómez-Merino F.C. 2017. The Mexican sugarcane production system: History, current status, and new trends. Sugarcane: Production systems, uses and economic importance: 39–71.Search in Google Scholar

Shukla S.K., Yadav S.K. 2017. Sustainability of smallholder sugarcane growers under changing climatic scenario. Current Advances in Agricultural Sciences (An International Journal), 9, 2: 197–203.Search in Google Scholar

Silalertruksa T., Gheewala S.H., Pongpat P. 2015. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator. Applied Energy, 160: 603–609.Search in Google Scholar

Silva M., Marques P., Coelho L., Nestler H., Castro P., Galhano C. 2018. Promoting Sustainability Through Agro-industrial Waste Valorisation. [in:] F. Alves, W. Leal Filho, U. Azeiteiro (eds) Theory and Practice of Climate Adaptation. Springer, Cham: 363–373.Search in Google Scholar

Subramanian N., Ramanathan R. 2012. A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics, 138, 2: 215–241.Search in Google Scholar

Talukdar D., Verma D.K., Malik K., Mohapatra B., Yulianto R. 2017. Sugarcane as a Potential Biofuel Crop. [in:] Ch. Mohan (ed.) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham: 123–137.Search in Google Scholar

Tomei J. 2015. The sustainability of sugarcane-ethanol systems in Guatemala: Land, labour and law. Biomass and Bioenergy. 82: 94–100.Search in Google Scholar

UNC (Unión Nacional de Cañeros A.C.). 2015. Estadísticas de la agroindustria azucarera.Search in Google Scholar

Veisi H., Liaghati H., Alipour A. 2016. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecological Indicators, 60: 644–654.Search in Google Scholar

Walter A., Dolzan P., Quilodrán O., de Oliveira JG., Da silva C., Piacente F. Segerstedt A., 2011. Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy, 39: 5703–5716.10.1016/j.enpol.2010.07.043Search in Google Scholar

Wang J.J., Jing Y.Y., Zhang C.F., Zhao J.H. 2009. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, 9: 2263–2278.Search in Google Scholar

eISSN:
2354-0079
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, Geography, Atmospheric Science and Climatology, Life Sciences, Plant Science, Ecology