Acceso abierto

Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview


Cite

Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, Rouis M. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 4, 296–307, 2015.10.1016/j.redox.2015.01.008431593725625584 Search in Google Scholar

Aguilar D, Deswal A, Ramasubbu K, Mann DL, Bozkurt B. Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol 105, 373–377, 2010.10.1016/j.amjcard.2009.09.041281321420102951 Search in Google Scholar

Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One 6, e28501, 2011.10.1371/journal.pone.0028501323674122180785 Search in Google Scholar

Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50, 439–465, 2010.10.1146/annurev.pharmtox.010909.10561020055710 Search in Google Scholar

Benigni A, Cassis P, Remuzzi G. Angiotensin II revisitado: nuevos roles en inflamacion, inmunologia y envejecimiento. EMBO Mol Med 2, 247–257, 2010.10.1002/emmm.201000080337732520597104 Search in Google Scholar

Brown L, Wall D, Marchant C, Sernia C. Tissue-specific changes in angiotensin II receptors in streptozotocin-diabetic rats. J Endocrinol 154, 355–362, 1997.10.1677/joe.0.15403559291846 Search in Google Scholar

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625, 2005.10.2337/diabetes.54.6.161515919781 Search in Google Scholar

Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57, 660–671, 2014.10.1007/s00125-014-3171-6396985724477973 Search in Google Scholar

Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, Jandeleit-Dahm KA. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 109, 1536–1542, 2004.10.1161/01.CIR.0000124061.78478.9415023892 Search in Google Scholar

Carey RM, Padia SH. Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure. Trends Endocrinol Metab 19, 84–87, 2008.10.1016/j.tem.2008.01.00318294862 Search in Google Scholar

Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 310, H137–H152, 2016.10.1152/ajpheart.00618.2015479663126475588 Search in Google Scholar

Costa JC, Costa RS, Silva CG, Coimbra TM. Enalapril reduces the expression of nuclear factor-kappaB and c-Jun N-terminal kinase in the renal cortices of five-sixths-nephrectomized rats. Am J Nephrol 26, 281–286, 2006.10.1159/00009396016772709 Search in Google Scholar

Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108, 1527–1532, 2003.10.1161/01.CIR.0000091257.27563.3214504252 Search in Google Scholar

Crowley SD, Gurley SB, Coffman TM. AT(1) receptors and control of blood pressure: the kidney and more. Trends Cardiovasc Med 17, 30–34, 2007.10.1016/j.tcm.2006.11.00217210476 Search in Google Scholar

Daffu G, del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 14,19891–19910, 2013.10.3390/ijms141019891382159224084731 Search in Google Scholar

Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33, 861–868, 2010.10.2337/dc09-1799284504220067962 Search in Google Scholar

Dell’Italia LJ. Translational success stories: angiotensin receptor 1 antagonists in heart failure. Circ Res 109, 437–452, 2011.10.1161/CIRCRESAHA.110.23855021817164 Search in Google Scholar

Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 101, 2271–2276, 2000.10.1161/01.CIR.101.19.227110811594 Search in Google Scholar

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87, E1–E9, 2000.10.1161/01.RES.87.5.e110969042 Search in Google Scholar

ESH/ESC Task Force for the Management of Arterial Hypertension. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 31, 1925–1938, 2013.10.1097/HJH.0b013e328364ca4c24107724 Search in Google Scholar

Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell’italia LJ. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 126, 461–469, 2014.10.1042/CS20130400428079524329563 Search in Google Scholar

Ferrario CM, VonCannon J, Jiao Y, Ahmad S, Bader M, Dell’Italia LJ, Groban L, Varagic J. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol 310, H995–H1002, 2016.10.1152/ajpheart.00833.2015486733826873967 Search in Google Scholar

Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M, De Angelis N, Ghezzi P, Latini R, Masson S. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci 79, 121–129, 2006.10.1016/j.lfs.2005.12.03616445948 Search in Google Scholar

Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol Rev 98, 1627–1738, 2018.10.1152/physrev.00038.2017633510229873596 Search in Google Scholar

Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M. The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 1864, 1–10, 2018.10.1016/j.bbadis.2017.10.00128986310 Search in Google Scholar

Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, Barbeau A, Boucher R, Genest J. Angiotensin-forming enzyme in brain tissue. Science 173, 64–65, 1971.10.1126/science.173.3991.644325865 Search in Google Scholar

Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci (Lond) 127, 135–148, 2014.10.1042/CS2013039624697296 Search in Google Scholar

Ghali JK, Boehmer J, Feldman AM, Saxon LA, Demarco T, Carson P, Yong P, Galle EG, Leigh J, Ecklund FL, Bristow MR. Influence of diabetes on cardiac resynchronization therapy with or without defibrillator in patients with advanced heart failure. J Card Fail 13, 769–773, 2007.10.1016/j.cardfail.2007.06.72317996827 Search in Google Scholar

Giacchetti G, Sechi LA, Rilli S, Carey RM. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol Metab 16, 120–126, 2005.10.1016/j.tem.2005.02.00315808810 Search in Google Scholar

Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680–6684, 2006.10.1038/sj.onc.120995417072321 Search in Google Scholar

Hayaishi-Okano R, Yamasaki Y, Katakami N, Ohtoshi K, Gorogawa S, Kuroda A, Matsuhisa M, Kosugi K, Nishikawa N, Kajimoto Y, Hori M. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with type 1 diabetes. Diabetes Care 25, 1432–1438, 2002.10.2337/diacare.25.8.143212145246 Search in Google Scholar

Hitomi H, Kiyomoto H, Nishiyama A. Angiotensin II and oxidative stress. Curr Opin Cardiol 22, 311–315, 2007.10.1097/HCO.0b013e3281532b5317556883 Search in Google Scholar

Hobart PM, Fogliano M, O’Connor BA, Schaefer IM, Chirgwin JM. Human renin gene: structure and sequence analysis. Proc Natl Acad Sci U.S.A. 81, 5026–5030, 1984.10.1073/pnas.81.16.50263916306089171 Search in Google Scholar

Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123, 193–203, 2012.10.1042/CS2011067722548405 Search in Google Scholar

Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD Axis: Another clue to understanding cardiovascular pathophysiology. Int J Mol Sci, 17, 1098, 2016. Search in Google Scholar

Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D. Activation of the NLRP3 inflammasome by proteins that signal for necroptosis. Methods Enzymol 545, 67–81, 2014.10.1016/B978-0-12-801430-1.00003-225065886 Search in Google Scholar

Kranzhofer R, Browatzki M, Schmidt J, Kubler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem Biophys Res Commun 257, 826–828, 1999.10.1006/bbrc.1999.054310208867 Search in Google Scholar

Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225, 631–637, 2010.10.1002/jcp.22322309850320635395 Search in Google Scholar

Krop M, Danser AH. Circulating versus tissue renin-angiotensin system: on the origin of (pro)renin. Curr Hypertens Rep 10, 112–118, 2008.10.1007/s11906-008-0022-118474177 Search in Google Scholar

Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens 17,168–173, 2008.10.1097/MNH.0b013e3282f521a818277150 Search in Google Scholar

Kuoppala A, Lindstedt KA, Saarinen J, Kovanen PT, Kokkonen JO. Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma. Am J Physiol Heart Circ Physiol 278, H1069– H1074, 2000.10.1152/ajpheart.2000.278.4.H106910749699 Search in Google Scholar

Lee M, Gardin JM, Lynch JC, Smith VE, Tracy RP, Savage PJ, Szklo M, Ward BJ. Diabetes mellitus and echocardio-graphic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 133, 36–43, 1997.10.1016/S0002-8703(97)70245-X Search in Google Scholar

Lim S, Lee ME, Jeong J, Lee J, Cho S, Seo M, Park S. sRAGE attenuates angiotensin II-induced cardiomyocyte hyper-trophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res 67, 691–701, 2018.10.1007/s00011-018-1160-929796842 Search in Google Scholar

Livingstone SJ, Looker HC, Hothersall EJ, Wild SH, Lindsay RS, Chalmers J, Cleland S, Leese GP, McKnight J, Morris AD, Pearson DW, Peden NR, Petrie JR, Philip S, Sattar N, Sullivan F, Colhoun HM. Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med 9, e1001321, 2012.10.1371/journal.pmed.1001321346274523055834 Search in Google Scholar

Lopez-Diez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta 1862, 2244–2252, 2016.10.1016/j.bbadis.2016.05.005510117627166197 Search in Google Scholar

Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab 25, 15–22, 2014.10.1016/j.tem.2013.08.002387722424011512 Search in Google Scholar

Matsusaka H, Kinugawa S, Ide T, Matsushima S, Shiomi T, Kubota T, Sunagawa K, Tsutsui H. Angiotensin II type 1 receptor blocker attenuates exacerbated left ventricular remodeling and failure in diabetes-associated myocardial infarction. J Cardiovasc Pharmacol 48, 95–102, 2006.10.1097/01.fjc.0000245405.41317.6017031262 Search in Google Scholar

Miller RG, Costacou T, Orchard TJ. Risk Factor Modeling for Cardiovascular Disease in Type 1 Diabetes in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study: A Comparison With the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC). Diabetes 68, 409–419, 2019.10.2337/db18-0515634130230409781 Search in Google Scholar

Mosquera J. Papel del receptor para compuestos de glicosilacion avanzada (RAGE) en la inflamacion. Invest Clin 51, 257–268, 2010. Search in Google Scholar

Munoz N, Pedreanez A, Mosquera J. Angiotensin II induces increased myocardial expression of receptor for advanced glycation end products, monocyte/macrophage infiltration and circulating endothelin-1 in rats with experimental diabetes. Can J Diabetes 44, 651–656, 2020.10.1016/j.jcjd.2020.03.01032654973 Search in Google Scholar

Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 350, 1026–1031, 2006.10.1016/j.bbrc.2006.09.14617045572 Search in Google Scholar

Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 40, 903–909, 2017.10.1038/hr.2017.6528680167 Search in Google Scholar

Nehme A, Zouein FA, Zayeri ZD, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis 6, 14, 2019.10.3390/jcdd6020014 Search in Google Scholar

Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34, 2436–2443, 2013.10.1093/eurheartj/eht149 Search in Google Scholar

Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 86, 747–803, 2006.10.1152/physrev.00036.2005 Search in Google Scholar

Pennells L, Kaptoge S, Wood A, Sweeting M, Zhao X, White I, et al. Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. Eur Heart J 40, 621–631, 2019. Search in Google Scholar

Peters J, Farrenkopf R, Clausmeyer S, Zimmer J, Kantachuvesiri S, Sharp MG, Mullins JJ. Functional significance of prorenin internalization in the rat heart. Circ Res 90, 1135–1141, 2002.10.1161/01.RES.0000019242.51541.99 Search in Google Scholar

Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97, 1916–1923, 1996.10.1172/JCI118623 Search in Google Scholar

Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 86, 1266–1272, 2000.10.1161/01.RES.86.12.1266 Search in Google Scholar

Sanghi S, Kumar R, Smith M, Baker KM, Dostal DE. Activation of protein kinase A by atrial natriuretic peptide in neonatal rat cardiac fibroblasts: role in regulation of the local renin-angiotensin system. Regul Pept 132, 1–8, 2005.10.1016/j.regpep.2005.06.007 Search in Google Scholar

Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100, 8258–8263, 2003.10.1073/pnas.1432869100 Search in Google Scholar

Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6, 719–728, 2004.10.1016/S1534-5807(04)00134-0 Search in Google Scholar

Singh H, Sen R, Baltimore D, Sharp PA. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154–158, 1986.10.1038/319154a03079885 Search in Google Scholar

Singh VP, Le B, Bhat VB, Baker KM, Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol 293, H939–H948, 2007.10.1152/ajpheart.00391.2007 Search in Google Scholar

Singh VP, Baker KM, Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294, H1675–H1684, 2008a.10.1152/ajpheart.91493.2007 Search in Google Scholar

Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57, 3297–3306, 2008b.10.2337/db08-0805 Search in Google Scholar

Soubrier F, Wei L, Hubert C, Clauser E, Alhenc-Gelas F, Corvol P. Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J Hypertens 11, 599–604, 1993.10.1097/00004872-199306000-00003 Search in Google Scholar

Thorpe SR, Baynes JW. Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25, 275–281, 2003.10.1007/s00726-003-0017-9 Search in Google Scholar

Tigerstedt R, Bergman PQ. Niere und Kreislauf1. Skand Arch Physiol 8, 223–271, 1898.10.1111/j.1748-1716.1898.tb00272.x Search in Google Scholar

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem, 275, 33238–33243, 2000.10.1074/jbc.M002615200 Search in Google Scholar

Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR; Alberta Kidney Disease Network. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380, 807–814, 2012.10.1016/S0140-6736(12)60572-8 Search in Google Scholar

van Kats JP, Danser AH, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MA. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 98, 73–81, 1998.10.1161/01.CIR.98.1.73 Search in Google Scholar

van Kesteren CA, Danser AH, Derkx FH, Dekkers DH, Lamers JM, Saxena PR, Schalekamp MA. Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. Hypertension 30, 1389–1396, 1997.10.1161/01.HYP.30.6.13899403558 Search in Google Scholar

Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59, 1428–1459, 2002.10.1007/s00018-002-8520-912440767 Search in Google Scholar

Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 45, 960–966, 2005.10.1161/01.HYP.0000160325.59323.b815767466 Search in Google Scholar

Watson AM, Li J, Samijono D, Bierhaus A, Thomas MC, Jandeleit-Dahm KA, Cooper ME. Quinapril treatment abolishes diabetes-associated atherosclerosis in RAGE/apolipoprotein E double knockout mice. Atherosclerosis 235, 444–448, 2014.10.1016/j.atherosclerosis.2014.05.94524945577 Search in Google Scholar

Weinsaft JW. Effect of ramipril on cardiovascular events in high-risk patients. N Engl J Med 343, 64–66, 2000.10.1056/NEJM20000706343011310896543 Search in Google Scholar

Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, Tschope C. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56, 641–646, 2007.10.2337/db06-116317327431 Search in Google Scholar

Wu C, Lu H, Cassis LA, Daugherty A. Molecular and pathophysiological features of angiotensinogen: A mini review. N Am J Med Sci (Boston) 4, 183–190, 2011.10.7156/v4i4p183329110522389749 Search in Google Scholar

Wu L, Iwai M, Li Z, Li JM, Mogi M, Horiuchi M. Nifedipine inhibited angiotensin II-induced monocyte chemoattractant protein 1 expression: involvement of inhibitor of nuclear factor kappa B kinase and nuclear factor kappa B-inducing kinase. J Hypertens 24, 123–130, 2006.10.1097/01.hjh.0000198031.30095.d116331110 Search in Google Scholar

Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282, C926–C934, 2002.10.1152/ajpcell.00254.200111880281 Search in Google Scholar

Zheng J, Wei CC, Hase N, Shi K, Killingsworth CR, Litovsky SH, Powell PC, Kobayashi T, Ferrario CM, Rab A, Aban I, Collawn JF, DellItalia LJ. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog. PLoS One 9, e94732, 2014.10.1371/journal.pone.0094732398622924733352 Search in Google Scholar

eISSN:
1336-0329
Idioma:
Inglés