Acceso abierto

Differences in the Synergic Accumulation of Toxic Elements in Pelagic and Benthic Fish from Glacier-Fed Rivers of the Dzungarian Alatau


Cite

Alti, A., Kurfi, A.U. & Abubakar T. (2022). Comparison between the concentration level of some heavy metals in Tilapia fish tissues with the international standards limit for food and human health in Dutsin-Ma, Katsina State Nigeria. Int. J. Innov. Agric. Biol. Res., 10, 14–22. Search in Google Scholar

Andasbayev, E.S., Kenzhebekov, A.K. & Kanagatov Z.Z. (2013). The ecological characteristic of the soil cover of middle mountains of the Zhongar-Alatau State National Nature Park (by the example of Nikonov Cordon). Oecol. Mont., 22(1), 38–40. Search in Google Scholar

Andreji, J. & Dvořák P. (2018). Levels of selected contaminants in fish muscle from upper Nitra River. Neuro Endocrinology Letters, 39(4), 315–320. Search in Google Scholar

Andreji, J., Dvořák, P. & Fik M. (2018). Distribution of heavy metals (Ni, Co, Pb, Cd, Hg) in tissues of European chub (Squalius cephalus L.) from the middle course of the Nitra river, Slovakia. Advanced Research in Life Sciences, 2(1), 16–21. DOI: 10.1515/arls-2018-0022. Search in Google Scholar

Andreji, J. & Stráňai I. (2007). A contamination of tissues from fish originated from the lower part of Nitra river with some metals (Fe, Mn, Zn, Pb, Cu, Co, Ni, Cr, Cd) (in Slovak). Slovak J. Anim. Sci., 40(3), 146–156. Search in Google Scholar

Andreji, J., Stráňai, I., Massanyi, P. & Valent M. (2006). Accumulation of some metals in muscles of five fish species from lower Nitra River. J. Environ. Sci. Health. A, 41, 2607–2622. DOI: 10.1080/10934520600928003. Search in Google Scholar

Anke, M., Müller, R. & Schäfer U. (2005). Recent progress in exploring the essentiality of the non-metallic ultratrace element arsenic to the nutrition of animals and man. Biomed. Res. Trace Elements, 16(3), 188–197. DOI: 10.11299/brte.16.188. Search in Google Scholar

Aslam, S. & Yousafzai A.M. (2017). Chromium toxicity in fish: A review article. J. Entomol. Zool. Stud., 5(3), 1483–1488. Search in Google Scholar

Bettinetti, R., Quadroni, S., Galassi, S., Bachetta, R., Bonardi, L. & Vailati G. (2008). Is meltwater from Alpine glaciers a secondary DDT source for lakes? Chemosphere, 73(7), 1027–1031. DOI: 10.1016/j.chemosphere.2008.08.017. Search in Google Scholar

Biyasheva, Z.M. (2010). Prolonged pollution by heavy metals and radionuclides of the territory adjacent to the Tekeli mining and processing plant (in Russian). Vestnik KazNU, Ecological Series, 29(3), 60–65. Search in Google Scholar

Bizzotto, E.C., Villa, S., Vaj, C. & Vighi M. (2009). Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere, 74(7), 924–930. DOI: 10.1016/j.chemosphere.2008.10.013. Search in Google Scholar

Blais, J.M., Charpentié, S., Pick, F., Kimpe, L.E., Amand, A.S. & Regnault-Roger C. (2006). Mercury, polybrominated diphenyl ether, organochlorine pesticide, and polychlorinated biphenyl concentrations in fish from lakes along an elevation transect in the French Pyrénées. Ecotoxicol. Environ. Saf., 63(1), 91–99. DOI: 10.1016/j.ecoenv.2005.08.008. Search in Google Scholar

Blais, J.M., Schindler, D.W., Muir, D.C.G., Sharp, M., Donald, D., Lafrenière, M., Braekevelt, E. & Strachan W.M.J. (2001). Melting glaciers: A major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio, 30(7), 410–415. DOI: 10.1639/0044-7447(2001)030[0410:MGAMSO]2.0.CO;2. Search in Google Scholar

Bloom, N.S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci., 49(5), 1010‒1017. DOI: 10.1139/f92-113. Search in Google Scholar

Bury, N.R., Walker, P.A. & Glover C.N. (2003). Nutritive metal uptake in teleost fish. J. Exp. Biol., 206, 11–23. DOI: 10.1242/jeb.00068. Search in Google Scholar

Cherednichenko, V.S., Cherednichenko, A.V., Cherednichenko, A.V., Zheksenbaeva, A.K. & Madibekov A.S. (2021). Heavy metal deposition through precipitation in Kazakhstan. Heliyon, 7, Aritcle e05844. DOI: 10.1016/j.heliyon.2020.e05844. Search in Google Scholar

Chiapella, A.M., Eagles‐Smith, C.A. & Strecker A.L. (2021). From forests to fish: Mercury in mountain lake food webs influenced by factors at multiple scales. Limnol. Oceanogr., 66, 1021–1035. DOI: 10.1002/lno.1165. Search in Google Scholar

Chowdhury, M.J. & Blust R. (2011). 7 – Strontium. Fish Physiol., 31(Part B), 351–390. DOI: 10.1016/S1546-5098(11)31029-1. Search in Google Scholar

Cripps, G., Widdicombe, S., Spicer, J.I. & Findlay H.S. (2013). Biological impacts of enhanced alkalinity in Carcinus maenas. Mar. Pollut. Bull., 71(1‒2), 190–198. DOI: 10.1016/j.marpolbul.2013.03.015. Search in Google Scholar

Cruz, E.R. & Tamse C.T. (1989). Acute toxicity of potassium permanganate to milkfish fingerlings Chanos chanos. Bull. Environ. Contam. Toxicol., 43(5), 785–788. DOI: 10.1007/BF01702004. Search in Google Scholar

Danabas, D. & Ural M. (2012). Determination of metal (Cu, Zn, Se, Cr and Cd) levels in tissues of the cyprinid fish, Capoeta trutta (Heckel, 1843) from different regions of Keban Dam Lake (Euphrates-Turkey). Bull. Environ. Contam. Toxicol., 89, 455–460. DOI: 10.1007/s00128-012-0744-2. Search in Google Scholar

Davies, T.D., Pickard, J. & Hall K.J. (2005). Acute molybdenum toxicity to rainbow trout and other fish. J. Environ. Eng. Sci., 4(6), 481–485. DOI: 10.1139/s05-021. Search in Google Scholar

Dočkalová, K., Holubcová, J., Bacardit, M., Bartrons, M., Camarero, L., Gallego, E., Grimalt, J.O., Hardekopf, D., Hořická, Z., Rosseland, B.O., Tátosová, J. & Stuchlík E. (2015). Brown and brook trout populations in the Tatra Mountain lakes (Slovakia, Poland) and contamination by long-range transported pollutants. Biologia, 70, 516–529. DOI: 10.1515/biolog-2015-0052. Search in Google Scholar

Dong, Z., Kang, S., Qin, X., Li, X., Qin, D. & Ren J. (2015). New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China. Sci. Total Environ., 529, 101–113. DOI: 10.1016/j.scitotenv.2015.05.065. Search in Google Scholar

Du, Z., Luo, W., Liu, Y., Xu, H., Wu, J., Wang, T., Yang, L. & Wen A. (2020). The dietary zinc requirement of a benthic fish Paramisgurnus Dabryanus. Aquac. Res., 51, 1346–1352. DOI: 10.1111/are.14462. Search in Google Scholar

Espinoza-Quiñones, F.R., Módenes, A.N., Palácio, S.M., Lorenz, E.K. & Oliveira A.P. (2011). Analysis of metal concentration levels in water, sediment and fish tissues from Toledo municipal lake by applying SR-TXRF technique. Water Sci. Technol., 63(7), 1506–1512. DOI: 10.2166/wst.2011.396. Search in Google Scholar

France, R.L. (1995). Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr., 40(7), 1310–1313. DOI: 10.4319/lo.1995.40.7.1310. Search in Google Scholar

Gabriel, M.C., Howard, N. & Osborne T.Z. (2014). Fish mercury and surface water sulfate relationships in the Everglades Protection Area. Environ. Manag., 53, 583-593 DOI: 10.1007/s00267-013-0224-4. Search in Google Scholar

Grieb, T.M., Bowie, G.L., Driscoll, C.T., Gloss, S.P., Schofield, C.L. & Porcella D.B. (1990). Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environ. Toxicol. Chem., 9, 919–930. DOI: 10.1002/etc.5620090710. Search in Google Scholar

Guevara, S.R., Bubach, B., Macchi, P.J., Vigliano, P., Arribére, M. & Colombo J.C. (2006). Rb–Cs Ratio as an Indicator of fish diet in lakes of the Patagonia, Argentina. Biol. Trace Elem. Res., 111, 97–119. DOI: 10.1385/BTER:111:1:97. Search in Google Scholar

Hammer, Ø., Harper, D.A. & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4(1), 9. Search in Google Scholar

Hogstrand, C., Wilson, R.W., Polgar, D. & Wood, C.M. (1994). Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J. Exp. Biol., 186(1), 55–73. DOI: 10.1242/jeb.186.1.55. Search in Google Scholar

Hrivnáková, K., Janiga, M. & Pogányová A. (2020). Effects of flooding on the physical and chemical water composition of the alpine lake Kolové pleso (High Tatra, West Carpathians). Oecol. Mont., 29(1), 23–27. Search in Google Scholar

Huang, J., Kang, S., Guo, J., Sillanpää, M., Zhang, Q., Qin, X., Du, W. & Tripathee L. (2014). Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmos. Environ., 96, 27–36. DOI: 10.1016/j.atmosenv.2014.07.023. Search in Google Scholar

Huang, J., Kang, S., Guo, J., Zhang, Q., Xu, J., Jenkins, M. G., Zhang, G. & Wang K. (2012). Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Sci. Total Environ., 429, 223–230. DOI: 10.1016/j.scitotenv.2012.04.045. Search in Google Scholar

Ikemoto, T., Tu, N. P. C., Okuda, N., Iwata, A., Omori, K., Tanabe, S., Tuyen, B.C. & Takeuchi I. (2008). Biomagnification of trace elements in the aquatic food web in the Mekong Delta. South Vietnam using stable carbon and nitrogen isotope analysis. Arch. Environ. Contam. Toxicol., 54, 504–515. DOI: 10.1007/s00244-007-9058-5. Search in Google Scholar

Jackson, D.A. (1993). Stopping rules in principal component analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214. DOI: 10.2307/1939574. Search in Google Scholar

Jackson, J.E. (1991). A user´s quide to principal components analysis. New York: John Wiley and Son. Search in Google Scholar

Janiga, M. (2001). Birds as bio-indicators of long transported lead in the alpine environment. In G. Visconti, M. Beniston, E.D. Iannorelli, & D. Barba (Eds.), Global change and protected areas (pp. 253–247). Dordrecht: Springer. DOI: 10.1007/0-306-48051-4. Search in Google Scholar

Janiga, M. (2002). Príjem atmosférického olova u Prunella collaris závisí od sezón. Oecol. Mont., 11, 94–95. Search in Google Scholar

Janiga, M. & Haas M. (2019). Alpine accentors as monitors of atmospheric long-range lead and mercury pollution in alpine environments. Environ. Sci. Pollut. Res., 26, 2445–2454. DOI: 10.1007/s11356-018-3742-z. Search in Google Scholar

Janiga, M. Jr. & Janiga M. (2023). Different accumulation of some elements in the fry and adults of alpine bullheads (Cottus poecilopus). Environ. Sci. Pollut. Res., 30, 44724–44732. DOI: 10.1007/s11356-023-25460-4. Search in Google Scholar

Janiga, M., Janiga, M. Jr. & Haas M. (2021). Ecotoxicology of alpine streams in the West Carpathians - Alpine Bullhead (Cottus poecilopus) and high mountain flash flood effects. Environ. Sci. Pollut. Res., 28, 51297–51305. DOI: 10.1007/s11356-021-14157-1. Search in Google Scholar

Janigová, Ľ. & Janiga M. (2023). Hydrochemistry of Kyrgyz streams and rivers. In. M. Janiga & M. Janiga Jr. (Eds.), Water quality in watercourses of the Kyrgyz mountain environment (pp. 15–182). Žilina: Institute of High Mountain Biology, Žilina University. Search in Google Scholar

Jiang, H., Liu, W., Xu, Z., Zhou, X., Zheng, Z., Zhao, T., Zhou, L., Zhang, X., Xu, Y. & Liu T. (2018). Chemical weathering of small catchments on the Southeastern Tibetan Plateau I: Water sources solute sources and weathering rates. Chem. Geol., 500, 159–174. DOI: 10.1016/j.chemgeo.2018.09.0i30. Search in Google Scholar

Jin, Z., An, Z., Yu, J., Li, F. & Zhang F. (2015). Lake Qinghai sediment geo-chemistry linked to hydroclimate variability since the last glacial. Quat. Sci. Rev., 122, 63–73. DOI: 10.1016/j.quascirev.2015.05.015. Search in Google Scholar

Jolicoeur, P. (1984). Principal components, factor analysis, and multivariate allometry. A small sample direction test. Biometrics, 40(3), 685–690. DOI: 10.2307/2530911. Search in Google Scholar

Kakareka, S., Gromov, S., Pacyna, J. & Kukharchyk T. (2004). Estimation of heavy metal emission fluxes on the territory of the NIS. Atmos. Environ., 38, 7101–7109. DOI: 10.1016/j.atmosenv.2004.03.079. Search in Google Scholar

Karimi, R., Chen, C.Y. & Folt C.L. (2016). Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Sci. Total Environ., 565, 211–221. DOI: 10.1016/j.scitotenv.2016.04.162. Search in Google Scholar

Kazgidromet (2018). Information bulletin on the state of the environment on the territory of the Republic of Kazakhstan 6 (224). Astana: Ministry of Energy. Search in Google Scholar

Kazgidromet (2021). Information bulletin on the state of the environment on the territory of the Republic of Kazakhstan 4 (258). Astana: Ministry of Ecology, Geology and Natural Resources. Search in Google Scholar

Koca, Y.B., Koca, S., Yıldız, Ş., Gürcü, B., Osanç, E., Tunçbaş, O. & Aksoy G. (2005). Investigation of histopathological and cytogenetic effects on Lepomis gibbosus (Pisces: Perciformes) in the Çine stream (Aydın/Turkey) with determination of water pollution. Environ. Toxicol., 20(6), 560–571. DOI: 10.1002/tox.20145. Search in Google Scholar

Kyllönen, K., Karlsson, V. & Ruoho-Airola T. (2009). Trace element deposition and trends during a ten year period in Finland. Sci. Total Environ., 407, 2260–2269. DOI: 10.1016/j.scitotenv.2008.11.045. Search in Google Scholar

Lange, T.R., Royals, H.E. & Connor L.L. (1993). Influence of water chemistry on mercury concentration in largemouth bass from Florida lakes. Trans. Am. Fish. Soc., 122(1), 74–84. DOI: 10.1577/1548-8659(1993)122<0074:IOWCOM>2.3.CO;2. Search in Google Scholar

Lin, H., Wang, X.P., Gong, P., Ren, J., Wang, C.F., Yuan, X.H., Wang, L. & Yao T.D. (2017). The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau. Sci. Total Environ., 601-602, 1814–1823. DOI: 10.1016/j.scitotenv.2017.06.038. Search in Google Scholar

Linnik, A.S., Gapparova, D.M. & Kostuk T.P. (2002). State of the fish fauna of some small rivers in Balkash basin. Tethys Aqua Zoological Research, 1, 117–122. Search in Google Scholar

Lloyd, R. (2008). The toxicity of zinc sulphate in rainbow trout. Ann. Appl. Biol., 48, 84–94. DOI: 10.1111/j.1744-7348.1960.tb03507.x. Search in Google Scholar

Lowe, T.P., May, T.W., Brumbaugh, W.G. & Kane D.A. (1985). National contaminant biomonitoring program: concentrations of seven elements in freshwater fish, 1978-1981. Arch. Environ. Contam. Tox., 14, 363–388. DOI: 10.1007/BF01055413. Search in Google Scholar

Luo, Z., Tan, X.Y., Zheng, J.L., Chen, Q. & Liu C. (2011). Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture, 319(1-2), 150–155. DOI: 10.1016/j.aquaculture.2011.06.047. Search in Google Scholar

McRae, N.K., Gaw, S. & Glover C.N. (2016). Mechanisms of zinc toxicity in the galaxiid fish, Galaxias maculatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 179, 184–190. DOI: 10.1016/j.cbpc.2015.10.010. Search in Google Scholar

Milošković, A., Dojčinović, B., Simić, S., Pavlović, M. & Simić V. (2014). Heavy metal and trace element bioaccumulation in target tissues of three edible predatory fish species from Bovan reservoir (Serbia). Fresenius Environmental Bulletin, 23(8a), 1884–1891. Search in Google Scholar

Milošković, A. & Simić V. (2023). Bioaccumulation of potentially toxic elements in fish species of Serbia: a review. Environ. Sci. Pollut. Res., 30, 32255–32277. DOI: 10.1007/s11356-023-25581-w. Search in Google Scholar

Milošković, A., Stojković Piperac, M., Kojadinović, N., Radenković, M., Duretanović, S., Čerba, D., Milošević, D. & Simić V. (2022). Potentially toxic elements in invasive fish species Prussian carp (Carassius gibelio) from different frehwater ecosystems and human exposure assessment. Environ. Sci. Pollut. Res., 29, 29152–29164. DOI: 10.1007/s11356-021-17865-w. Search in Google Scholar

Nawab, J., Ghani, J., Rehman, S.A.U., Idress, M., Luqman, M., Khan, S., Asghar, A. & Rahman Z. (2022). Biomonitoring of mercury in water. sediments. and fish (brown and rainbow trout) from remote alpine lakes located in the Himalayas, Pakistan. Environ. Sci. Pollut. Res., 29, 81021–81036. DOI: 10.1007/s11356-022-21340-5. Search in Google Scholar

Neal, C., Smith, C.J., Jeffery, H. & Jarvie H. (1996). Trace element concentrations in the major rivers entering the Humber estuary, NE England. J. Hydrol., 182, 37–64. DOI: 10.1016/0022-1694(95)02940-0. Search in Google Scholar

Neupane, B., Kang, S.C., Chen, P.F., Zhang, Y.L., Ram, K., Rupakheti, D., Tripathee, L., Sharma, C.M., Cong, Z.Y., Li, C.L., Hou, J.Z., Xu, M. & Thapa P. (2019). Historical black carbon reconstruction from the lake sediments of the Himalayan-Tibetan Plateau. Environ. Sci. Technol., 53(10), 5641–5651. DOI: 10.1021/acs.est.8b07025. Search in Google Scholar

Noël, L., Chekri, R., Millour, S., Merlo, M., Leblanc, J.-C. & Guérin T. (2013). Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas. Chemosphere, 90, 1900–1910. DOI: 10.1016/j.chemosphere.2012.10.015. Search in Google Scholar

Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X. & Hayasaka T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys., 7(16), 4419–4444. DOI: 10.5194/acp-7-4419-2007. Search in Google Scholar

Paripatananont, T. & Lovell R.T. (1995). Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture, 133(1), 73–82. DOI: 10.1016/0044-8486(94)00404-C. Search in Google Scholar

Parsons, L., Shaver, L., Andersen, C.B. & Sargent K.A. (2001). Sediment transport of zinc in a contaminated stream, travelers rest, South Carolina. Geol. Soc. Am. Abst. Program Southeast Sect., 33, 78–79. Search in Google Scholar

Pastorino, P., Bertoli, M., Kušće, M., Giulianini, P.G., Menconi, V., Prearo, M. & Pizzul E. (2020). Liver lipid accumulation in European bullhead (Cottus cobio) from a High-Mountain Lake: An adaptive strategy to survive the adverse winter season. Diversity, 12, 442. DOI: 10.3390/d12120442 Search in Google Scholar

Perinajová, M., Janiga, M. Jr., Janiga, M. & Kompišová Ballová Z. (2020). Occurrence and vertical distribution of Ca, Cl, Cr, Fe, Mn, Mo, K, Rb, Sr, S, Sn, and Zn in the skull bones of Alpine bullhead (Cottus poecilopus) in the West Carpathians. Environ. Sci. Pollut. Res., 27, 37114–37120. DOI: 10.1007/s11356-020-09752-7. Search in Google Scholar

Peters, E.L., Schultz, I.R. & Newman M.C. (1999). Rubidium and cesium kinetics and tissue distributions in channel catfish (Ictalurus punctatus). Ecotoxicol., 8, 287–300. DOI: 10.1023/A:1008981216690. Search in Google Scholar

Plessl, C., Otachi, E.O., Körner, W., Avenant-Oldewage, A. & Jirsa F. (2017). Fish as bioindicators for trace element pollution from two contrasting lakes in the Eastern Rift Valley, Kenya: spatial and temporal aspects. Environ. Sci. Pollut. Res., 24, 19767–19776. DOI: 10.1007/s11356-017-9518-z. Search in Google Scholar

Power, M., Klein, G.M., Guiguer, K. & Kwan M.K.H. (2002). Mercury accumulation in the fish community of a sub‐Arctic lake in relation to trophic position and carbon sources. J. App. Ecol., 39(5), 819–830. DOI: 10.1046/j.1365-2664.2002.00758. Search in Google Scholar

Reimer, P.S. (1999). Environmental effects of manganese and proposed fresh water guidelines to protect aquatic life in British Columbia. Master Thesis, University of British Columbia, Vancouver, Canada. Search in Google Scholar

Saiki, M.K., Jennings, M.R. & Brumbaugh W.G. (1993). Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California. Arch. Environ. Contam. Toxicol., 24, 307–319. DOI: 10.1007/BF01128729. Search in Google Scholar

Salem, Z.B., Capelli, N., Laffray, X., Elise, G., Ayadi, H. & Aleya L. (2014). Seasonal variation of heavy metals in water, sediment and roachtissues in a landfill draining system pond (Etueffont, France). Ecol. Eng., 69, 25–37. DOI: 10.1016/j.ecoleng.2014.03.072. Search in Google Scholar

Saparov, A. (2014). Soil resources of the Republic of Kazakhstan: Current status, problems and solutions. In L. Mueller, A. Saparov & G. Lischeid (Eds.), Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia (pp. 61–73). Cham: Springer. DOI: 10.1007/978-3-319-01017-5. Search in Google Scholar

Satoh, S., Izume, K., Takeuchi, T. & Watanabe T. (1992). Effect of supplemental tricalcium phosphate on zinc and manganese availability to common carp. Bulletin of the Japanese Society of Scientific Fisheries, 58(3), 539–545. DOI: 10.2331/suisan.58.539. Search in Google Scholar

Schmid, P., Kohler, M., Gujer, E., Zennegg, M. & Lanfranchi M. (2007). Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland. Chemosphere, 67, 16–21. DOI: 10.1016/j.chemosphere.2006.05.080. Search in Google Scholar

Shao, J., Shi, J., Duo, B., Liu, C., Gao, Y., Fu, J., Yang, R. & Jiang G. (2016), Mercury in alpine fish from four rivers in the Tibetan Plateau. J. Environ. Sci., 39, 22–28. DOI: 10.1016/j.jes.2015.09.009. Search in Google Scholar

Shotyk, W., Bicalho, B., Cuss, C.W., Grant-Weaver, I., Nagel, A., Noernberg, T., Poesch, M. & Sinnatamby N.R. (2019). Bioaccumulation of Tl in otoliths of Trout-perch (Percopsis omiscomaycus) from the Athabasca River, upstream and downstream of bitumen mining and upgrading. Sci. Total Environ., 650, 2559–2566. DOI: 10.1016/j.scitotenv.2018.09.318. Search in Google Scholar

Solár, J. & Janiga M. (2023). A geographic view of the hydrochemistry of Kyrgyz rivers and glaciers. In M. Janiga, & M. Janiga Jr. (Eds.) Water quality in watercourses of the Kyrgyz mountain environment (pp. 183–190). Žilina: Institute of High Mountain Biology, Žilina University. Search in Google Scholar

Speckman, T.W. & Norris W.P. (1964). The age-dependence of strontium retention in rats and mice. Radiat. Res., 23(3), 461–474. DOI: 10.2307/3571626. Search in Google Scholar

St Pierre, K.A., St Louis, V.L., Lehnherr, I., Gardner, A.S., Serbu, J.A., Mortimer, C.A., Muir, D.C.G., Wiklund, J.A., Lemire, D., Szostek, L. & Talbot C. (2019). Drivers of mercury cycling in the rapidly changing glacierized watershed of the high Arctic’s largest lake by volume (Lake Hazen, Nunavut, Canada). Environ. Sci. Technol., 53, 1175–1185. DOI: 10.1021/acs.est.8b05926. Search in Google Scholar

Sun, J., Zhou, T.C., Liu, M., Chen, Y.C., Shang, H., Zhu, L.P., Shedayi, A.A., Yu, H., Cheng, G.W., Liu, G.H., Xu, M., Deng, W., Fan, J.H., Lu, X.Y. & Sha Y.K. (2018). Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth Sci. Rev., 185, 308–324. DOI: 10.1016/j.earscirev.2018.06.012. Search in Google Scholar

Sun, S., Kang, S., Huang, J., Li, C., Guo, J., Zhang, Q., Sun, X. & Tripathee L. (2016). Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau. Chinese J. Environ. Sci., 44, 213–223. DOI: 10.1016/j.jes.2015.09.017. Search in Google Scholar

Sun, X., Wang, K., Kang, S., Guo, J., Zhang, G., Huang, J., Cong, Z., Sun, S. & Zhang Q. (2017). The role of melting glaciers in mercury export and transport: An intensive sampling campaign in the Quagaqie Basin, inland Tibetan Plateau. Environ. Pollut., 220, 936–945. DOI: 10.1016/j.envpol.2016.10.079. Search in Google Scholar

Šoltés, R. (2023). Tian Shan: Vegetation as an environmental bioindicator. In M. Janiga, & M. Janiga Jr. (Eds.), Water quality in watercourses of the Kyrgyz mountain environment (pp. 219–240). Žilina: Institute of High Mountain Biology, Žilina University. Search in Google Scholar

Templeton, W.L. & Brown V.M. (1964). The relationship between the concentrations of calcium, strontium and strontium-90 in wild brown trout, Salmo trutta L. and the concentrations of the stable elements in some waters of the United Kingdom, and the implications in radiological health studies. Int. J. Air Water Pollut., 8, 49–75. Search in Google Scholar

Thies, H., Nickus, U., Mair, V., Tessadri, R., Tait, D., Thaler, B. & Psenner R. (2007). Unexpected response of high alpine lake waters to climate warming. Environ. Sci. Technol., 41, 7424–7429. DOI: 10.1021/es0708060. Search in Google Scholar

TOO (2021). Construction of hydroelectric station-3 on the Kora River. Environmental Impact Assessment Project, Report. Almaty: Dzhunusova G.A. (GL No. 01729 dated January 30, 2008). Search in Google Scholar

Tóth, T., Andreji, J., Tóth, J., Slávik, M., Árvay, J. & Stanovič R. (2012). Cadmium, lead and mercury contents in fishes – case study. J. Microbiol. Biotechnol. Food Sci., 1, 837–847. Search in Google Scholar

Villa, S., Negrelli, C., Finizio, A., Flora, O. & Vighi M. (2006). Organochlorine compounds in ice melt water from Italian Alpine rivers. Ecotoxicol. Environ. Saf., 63, 84–90. DOI: 10.1016/j.ecoenv.2005.05.010. Search in Google Scholar

Ward, J.V. (1973). Molybdenum concentrations in tissues of rainbow trout (Salmo gairdneri) and kokanee salmon (Oncorhynchus nerka) from waters differing widely in molybdenum content. J. Fish. Res. Board Can., 30, 841–842. DOI: 10.1139/f73-141. Search in Google Scholar

Welker, T., Barrows, F., Overtruf, K., Gaylord, G. & Sealey W. (2016). Optimizing zinc supplementation levels of rainbow trout (Oncorhynchus mykiss) fed practical type fishmeal- and plant-based diets. Aquac. Nutr., 22(1), 91–108. DOI: 10.1111/anu.12232. Search in Google Scholar

Xu, T., Huang, Y. & Chen J. (2014). Metal distribution in the tissues of two benthic fish from paddy fields in the middle reach of the Yangtze River. Bull. Environ. Contam. Toxicol., 92, 446–450. DOI: 10.1007/s00128-014-1211-z. Search in Google Scholar

Yamaguchi, S., Miura, C., Ito, A., Agusa, T., Iwata, H., Tanabe, S., Tuyen, B.C. & Miura T. (2007). Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquat. Toxicol., 83(1), 43–51. DOI: 10.1016/j.aquatox.2007.03.010. Search in Google Scholar

Yang, R.Q., Jing, C.Y., Zhang, Q.H. & Jiang G.B. (2013). Identifying semi-volatile contaminants in fish from Niyang River, Tibetan Plateau. Environ. Earth Sci., 68, 1065–1072. DOI: 10.1007/s12665-012-1808-7. Search in Google Scholar

Yeserkepova, I. (2014). Review of the heavy metal situation and plans for ratification of LRTAP Protocols in Kazakhstan JSC Zhasyl Damu Report. Astana: Ministry of Environment and Water Resources of the Republic of Kazakhstan. Search in Google Scholar

Zhang, Q., Huang, J., Wang, F., Mark, L., Xu, J., Armstrong, D., Li, C., Zhang, Y. & Kang S. (2012). Mercury distribution and deposition in glacier snow over western China. Environ. Sci. Technol., 46, 5404–5413. DOI: 10.1021/es300166x. Search in Google Scholar

Zhang, Q., Kang, S., Gabrielli, P., Loewen, M. & Schwikowski M. (2015). Vanishing high mountain glacial archives: challenges and perspectives. Environ. Sci. Technol., 49, 9499–9500. DOI: 10.1021/acs.est.5b03066. Search in Google Scholar

Zhang, Q., Pan, K., Kang, S., Zhu, A. & Wang W.-X. (2014). Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ. Sci. Technol., 48(9), 5220–5228. DOI: 10.1021/es404275v. Search in Google Scholar

Zhanykhan, K. & Kozykeeva A.T. (2017). Geoecological assessment of surface water quality in the catchment area of the Karatal River basin. Research, results (in Russian). Kazakh National Agrarian University Іzdenіster, 4, 311–315. Search in Google Scholar

Zhavoronko, V.S. (2018). Assessment of the chemical composition and water quality of the Karatal River at the Taldykorgan wastewater discharge site (Kazakhstan) (in Russian). National Research Tomsk Polytechnic University, Tomsk. Search in Google Scholar

Zhu, T., Wang, X., Lin, H., Ren, J., Wang, C. & Gong P. (2020). Accumulation of pollutants in proglacial lake sediments: Impacts of glacial meltwater and anthropogenic activities. Environ. Sci. Technol., 54(13), 7901–7910. DOI: 10.1021/acs.est.0c01849. Search in Google Scholar

eISSN:
1337-947X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other