Acceso abierto

Climatically Determined Spatial and Temporal Changes in the Biomass of Betula spp. of Eurasia in the Context of the Law of the Limiting Factor


Cite

Behrensmeyer, A. (2006). Atmosphere: Climate change and human evolution. Science, 311 (5760), 476–478. DOI: 10.1126/science.1116051.Search in Google Scholar

Bergstrom, D.M., Wienecke, B.C., van den Hoff, J., Hughes, L., Lindenmayer, D.B., Ainsworth, T.D., Baker, C.M., Bland, L., Bowman, D.M.J.S., Brooks, S.T., Canadell, J.G., Constable, A.J., Dafforn, K.A., Depledge, M.H., Dickson, C.R., Duke, N.C., Helmstedt, K.J., Holz, A., Johnson, C.R., McGeoch, M.A., Melbourne-Thomas, J., Morgain, R., Nicholson, E., Prober, S.M., Raymond, B., Ritchie, E.G., Robinson, S.A., Ruthrof, K.X., Setterfield, S.A., Sgrò, C.M., Stark, J.S., Travers, T., Trebilco, R., Ward, D.F.L., Wardle, G.M., Williams, K.J., Zylstra, P.J. & Shaw J.D. (2021). Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 27, 1–12. DOI: 10.1111/gcb.15539.Search in Google Scholar

Blois, J.L. Williams, J.W., Fitzpatrick, M.C., Jackson, S.T. & Ferrier S. (2013). Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. U.S.A., 110(23), 9374–9379. DOI: 10.1073/pnas.1220228110.Search in Google Scholar

Cifuentes–Jara, M. & Henry M. (2013). Proceedings of the regional technical workshop on “Tree Volume and Biomass Allometric Equations in South and Central America”. 21–24 May 2013, UN–REDD MRV Report 12, Turrialba, Costa Rica.Search in Google Scholar

Fischer, F.J., Marechaux, I. & Chave J. (2019). Improving plant allometry by fusing forest models and remote sensing. New Phytol., 223, 1159–1165. DOI: 10.1111/nph.15810.Search in Google Scholar

Fonti, M.V. (2020). Climatic signal in the parameters of annual rings (wood density, anatomical structure and isotopic composition) of coniferous and deciduous tree species in various natural and climatic zones of Eurasia (in Russian). Diss. Doct. Biol. Sci., Krasnoyarsk, SibFU.Search in Google Scholar

Forrester, D.I., Tachauer, I.H., Annighöefer, P., Barbeito, I.G., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S. & Sileshi G.W. (2017). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag., 396, 160–175. DOI: 10.1016/j.foreco.2017.04.011.Search in Google Scholar

Glebov, F.Z. & Litvinenko V.I. (1976). The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests (in Russian). Lesovedenie (Soviet Forest Science), 4, 56–62.Search in Google Scholar

Halofsky, J.S., Conklin, D.R., Donato, D.C., Halofsky, J.E. & Kim J.B. (2018). Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A. PLoS ONE, 13(12), e0209490. DOI: 10.1371/journal.pone.0209490.Search in Google Scholar

He, X., Lei, X.-D. & Dong Li-Hu (2021). How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? Ecological Indicators, 126, 107569. DOI: 10.1016/j.ecolind.2021.107569.Search in Google Scholar

Huxley, J. (1932). Problems of relative growth. London: Methuen & Co.Search in Google Scholar

Kira, T. & Shidei T. (1967). Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Jpn. J. Ecol., 17(2), 70–87. DOI:10.18960/SEITAI.17.2_70.Search in Google Scholar

Kofman, G.B. (1986). Growth and shape of trees (in Russian). Novosibirsk: Nauka.Search in Google Scholar

Kosanic, A., Anderson, K., Harrison, S., Turkington, T. & Bennie J. (2018). Changes in the geographical distribution of plant species and climatic variables on the West Cornwall Peninsula (South West UK). PLoS ONE, 13(2), e0191021. DOI: 10.1371/journal.pone.0191021Search in Google Scholar

Laczko, F. & Aghazarm Ch. (2009). Migration, environment and climate change: Assessing the evidence. Geneva: Switzerland International Organization for Migration. United Nations University, UNU-EHS, Institute for Environment and Human Security.Search in Google Scholar

Liebig, J. (1840). Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag Vieweg. http://www.deutsches-textarchiv.de/liebig_agricultur_1840. Accessed on 26.11.2019).Search in Google Scholar

Liepa, I.Y. (1980). Dynamics of wood stock: Forecast and ecology (in Russian). Riga: Zinatne.Search in Google Scholar

Lohbeck, M., Poorter, L., Martinez-Ramos, M. & Bongers F. (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242–1252. DOI: 10.1890/14-0472.1.Search in Google Scholar

Martin, P.A., Newton, A.C. & Bullock J.M. (2013). Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. Lond. B Biol. Sci., 280, 1–8. DOI: 10.1098/rspb.2013.2236.Search in Google Scholar

Matala, J., Ojansuu, R., Peltola, H., Raitio, H. & Kellomäki S. (2006). Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecol. Model., 199, 39–52. DOI: 10.1016/j.ecolmodel.2006.06.009.Search in Google Scholar

Miles-Novelo, A. & Anderson C.A. (2019). Climate change and psychology: Effects of rapid global warming on violence and aggression. Current Climate Change Reports, 5, 36–46. DOI: 10.1007/s40641-019-00121-2.Search in Google Scholar

Molchanov, A.A. (1971). Productivity of organic mass in forests of different zones (in Russian). Moscow: Nauka.Search in Google Scholar

Pickett, S. (1989). Space-for-time substitution as an alternative to long-term studies. In G.E. Likens (Ed.), Long-term studies in ecology: Approaches and alternatives (pp. 110–135). New York: Springer. DOI: 10.1007/978-1-4615-7358-6Search in Google Scholar

Radkau, J. (2008). Nature and power: A global history of the environment. German Historical Institute and Cambridge University Press.Search in Google Scholar

Ripple, W.J., Wolf, Ch., Newsome, T.M., Barnard, P. & Moomaw W.R. (2020). World scientists’ warning of a climate emergency. BioScience, 70(1), 8–12. DOI: 10.1093/biosci/biab079.Search in Google Scholar

Rosenberg, G.S., Ryansky, F.N., Lazareva, N.V., Saksonov, S.V., Simonov, Yu.V. & Khasaev G.R. (2016). General and applied ecology (in Russian). Samara-Togliatti: Publishing House of the Samara State Economic University.Search in Google Scholar

Rudgers, J.A., Hallmark, A., Baker, S.R., Baur, L., Hall, K.M., Litvak, M.E., Muldavin, E.H., Pockman, W.T. & Whitney K.D. (2019). Sensitivity of dryland plant allometry to climate. Functional Ecology, 33(12), 1–14. DOI: 10.1111/1365-2435.13463.Search in Google Scholar

Shelford, V.E. (1913). Animal communities in temperate America as illustrated in the Chicago region: A study in animal ecology. Issue 5, Part 1. Chicago: University of Chicago Press.Search in Google Scholar

Sprugel, D.G. (1983). Correcting for bias in log-transformed allometric equations. Ecology, 64, 209–210. DOI: 10.2307/1937343.Search in Google Scholar

Stegen, J.C., Swenson, N.G., Enquist, B.J., White, E.P., Phillips, O.L., Jorgensen, P.M., Weiser, M.D., Mendoza, A.M. & Vargas P.N. (2011). Variation in aboveground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr., 20(5), 744–754. DOI: 10.1111/j.1466-8238.2010.00645.x.Search in Google Scholar

Usoltsev, V.A. (2010). Eurasian forest biomass and primary production data. Yekaterinburg: Ural Branch of Russian Academy of Sciences. DOI: 10.13140/RG.2.2.35234.17605.Search in Google Scholar

Usoltsev, V.A. (2020). Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. Yekaterinburg: Ural State Forest Engineering University; Botanical Garden, Ural Branch of Russian Academy of Sciences. https://elar.usfeu.ru/bitstream/123456789/9647/2/Base1_v2_ob.pdfSearch in Google Scholar

Usoltsev, V.A., Kolchin, K.V., Noritsina, Yu.V., Azarenok, M.V. & Bogoslovskaya O.A. (2017). Biases of general species-specific allometric models in the local assessment of the phytomass of pine, cedar and fir trees. Eko-Potencial, 18(2), 47–58. https://elar.usfeu.ru/bitstream/123456789/6552/1/eko-2-17-03.pdf.Search in Google Scholar

Usoltsev, V.A., Kovyazin, V.F. & Tsepordey I.S. (2020). Increasing contribution of climate variables to the explanation of Quercus spp. single-tree biomass variability in Eurasia as related to model deviation from allometry (in Russian). Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 233, 39–59. DOI: 10.21266/2079-4304.2020.233.39-59.Search in Google Scholar

Usoltsev, V.A., Merganičová, K., Konôpka, B., Osmirko, A.A., Tsepordey, I.S. & Chasovskikh V.P. (2019). Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal, 65, 166–179. DOI: 10.2478/forj-2019-0017.Search in Google Scholar

Usoltsev, V.A., Merganičová, K., Konôpka, B. & Tsepordey I.S. (2022a). The principle of space-for-time substitution in predicting Picea spp. biomass change under climate shifts. Central European Forestry Journal, 68(3), 1–16. DOI:10.2478/forj-2022-0004.Search in Google Scholar

Usoltsev, V., Zukow, W. & Tsepordey I. (2022b). Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor. Ecological Questions, 33(1), 1–13. DOI: 10.12775/EQ.2022.007.Search in Google Scholar

Utkin, A.I. (2004). Two voluminous books about the biomass of the forests of Northern Eurasia (in Russian). Lesovedenie (Soviet Forest Science), 1, 68–70.Search in Google Scholar

Vasseur, F., Exposito-Alonso, M., Ayala-Garay, O. J., Wang, G., Enquist, B., Vile, D. &Search in Google Scholar

Wiegel, D. (2018). Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A., 115(13), 3416– 3421. DOI: 10.1073/pnas.1709141115.Search in Google Scholar

Veloz, S., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu Z. (2012). No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models. Global Change Biology, 18(5), 1698–1713. DOI: 10.1111/J.1365-2486.2011.02635.X.Search in Google Scholar

Wang, J.R., Zhong, A.L. & Kimmins J.P. (2002). Biomass estimation errors associated with the use of published regression equations of paper birch and trembling aspen. North. J. Appl. For., 19, 128–136. DOI: 10.1093/njaf/19.3.128.Search in Google Scholar

Wirth, C., Schumacher, J. & Schulze E.-D. (2004). Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol., 24, 121–139. DOI: 10.1093/treephys/24.2.121.Search in Google Scholar

Wood, A.G. (1986). A potential bias in log-transformed allometric equations. Wader Study Group Bulletin, 47, 17–19.Search in Google Scholar

World Weather Maps (2007). https://www.mapsofworld.com/referrals/weather.Search in Google Scholar

eISSN:
1337-947X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other