Cite

Ahmad, M., Uniyal, S.K., Batish, D.R., Rathee, S., Sharma, P. & Singh H.P. (2021). Flower phenological events and duration pattern is influenced by temperature and elevation in Dhauladhar mountain range of Lesser Himalaya. Ecological Indicators, 129, 107902. DOI: 10.1016/j.ecolind.2021.107902. Open DOISearch in Google Scholar

Alioua, Y., Bissati, S., Kherbouche, O. & Bosmans R. (2016). Spiders of Sebkhet El Melah (Northern Sahara, Algeria): review and new records. Serket, 15(1), 33–40. Search in Google Scholar

Almeida-Neto, M., Machado, G., Pinto-da-Rocha, R. & Giaretta A.A. (2006). Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport’s rule?. J. Biogeogr., 33(2), 361–375. DOI: 10.1111/j.1365-2699.2005.01389.x. Open DOISearch in Google Scholar

Amari, H., Zebsa, R., Lazli, A., Bensouilah, S., Mellal, M.K., Mahdjoub, H. & Khelifa R. (2019). Differential elevational cline in the phenology and demography of two temporally isolated populations of a damselfly: Not two but one taxon?. Ecol. Entomol., 44(1), 93–104. DOI: 10.1111/een.12680. Open DOISearch in Google Scholar

Angilletta Jr., M.J., Steury, T.D. & Sears M.W. (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44(6), 498–509. DOI: 10.1093/icb/44.6.498.21676736 Open DOISearch in Google Scholar

Arroyo, M.T.K., Armesto, J.J. & Villagran C. (1981). Plant phenological patterns in the high Andean Cordillera of central Chile. J. Ecol., 69, 205–223. DOI: 10.2307/2259826. Open DOISearch in Google Scholar

Bates, D., Mächler, M., Bolker, B. & Walker S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(i01). DOI: 10.18637/jss.v067.i01. Open DOISearch in Google Scholar

Batzer, D. & Boix D. (2016). An introduction to freshwater wetlands and their invertebrates. In D. Batzer & D. Boix (Eds.), Invertebrates in freshwater wetlands (pp. 1–23). Cham: Springer. DOI: 10.1007/978-3-319-24978-0_1. Open DOISearch in Google Scholar

Belozerov, V.N. (2012). Dormant stages and their participation in adjustment and regulation of life cycles of harvestmen (Arachnida, Opiliones). Entomol. Rev., 92(6), 688–713. DOI: 10.1134/S0013873812060073. Open DOISearch in Google Scholar

Blanckenhorn, W.U. (1997). Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia, 109, 342–352. https://www.jstor.org/stable/422153010.1007/s00442005009228307530 Search in Google Scholar

Blanckenhorn, W.U. (2000). The evolution of body size: what keeps organisms small?. Q. Rev. Biol., 75(4), 385–407. DOI: 10.1086/39362011125698 Open DOISearch in Google Scholar

Bonte, D., Baert, L., Lens, L. & Maelfait J.P. (2004). Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. Ecography, 27(3), 343–349. https://www.jstor.org/stable/368361510.1111/j.0906-7590.2004.03844.x Search in Google Scholar

Bosmans, R. & Abrous O. (1992). Studies on North African Linyphiidae. VI. The genera Pelecopsis Simon, Trichopterna Kulczynski and Ouedia gen. n. (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 9(3), 65–85. Search in Google Scholar

Bosmans, R. & Beladjal L. (1991). 12 new species of harpactea from Algeria with description of 3 unknown females (Araneae-Dysderidae). Rev. Suisse Zool., 98(3), 645–680. http://hdl.handle.net/1854/LU-357960 Search in Google Scholar

Bosmans, R. & Chergui F. (1993). The genus Mecopisthes Simon in North Africa (Araneae, Linyphiidae, Erigoninae). Studies on North African Linyphiidae. Bulletin et Annales de la Societe Royale Belge d’Entomologie, 129(10–12), 341–358. Search in Google Scholar

Bowden, J.J., Høye, T.T. & Buddle C.M. (2013). Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol., 36(6), 831–836. DOI: 10.1007/s00300-013-1308-6 Open DOISearch in Google Scholar

Brehm, G., Colwell, R.K. & Kluge J. (2007). The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr., 16(2), 205–219. DOI: 10.1111/j.1466-8238.2006.00281.x. Open DOISearch in Google Scholar

Chatzaki, M., Lymberakis, P., Mitov, P. & Mylonas M. (2009). Phenology of Opiliones on an altitudinal gradient on Lefka Ori Mountains, Crete, Greece. J. Arachnol., 37(2), 139–146. https://www.jstor.org/stable/4023382010.1636/T07-38.1 Search in Google Scholar

Chatzaki, M., Markakis, G. & Mylonas M. (2005). Phenological patterns of ground spiders (Araneae, Gnaphosidae) on Crete, Greece. Ecol. Mediterr., 31(1), 33–53.10.3406/ecmed.2005.1477 Search in Google Scholar

Chown, S.L. & Klok C.J. (2003). Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26(4), 445–455. https://www.jstor.org/stable/368356910.1034/j.1600-0587.2003.03479.x Search in Google Scholar

Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A. & Schwartz M.D. (2007). Shifting plant phenology in response to global change. Trends Ecol. Evol., 22(7), 357–365. DOI: 10.1016/j.tree.2007.04.003.17478009 Open DOISearch in Google Scholar

Foelix, R.F. (2011). Biology of spiders. Oxford: Oxford University Press. Search in Google Scholar

Fritz, R.S. & Morse D.H. (1985). Reproductive success and foraging of the crab spider Misumena vatia. Oecologia, 65(2), 194–200. DOI: 10.1007/BF00379217.28310665 Open DOISearch in Google Scholar

Hågvar, S., Østbye, E. & Melåen J. (1978). Pit-fall catches of surface-active arthropods in some high mountain habitats at Finse, south Norway. II. General results at group level, with emphasis on Opiliones, Araneida, and Coleoptera. Nor. J. Entomol., 25, 195–205. Search in Google Scholar

Halaj, J., Ross, D.W. & Moldenke A.R. (2000). Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos, 90(1), 139–152. DOI: 10.1034/j.1600-0706.2000.900114.x. Open DOISearch in Google Scholar

Hodkinson, I.D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev., 80(3), 489–513. DOI: 10.1017/S1464793105006767.16094810 Open DOISearch in Google Scholar

Honěk, A. (1993). Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos, 66(3), 483–492. DOI: 10.2307/3544943. Open DOISearch in Google Scholar

Høye, T.T. & Hammel J.U. (2010). Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Clim. Res., 41(3), 259–265. DOI: 10.3354/cr00855. Open DOISearch in Google Scholar

Iglesias, P.P. & Pereyra M.O. (2020). Population dynamics and reproductive phenology of a harvestman in a tidal freshwater wetland. An. Acad. Bras. Ciênc., 92(1). DOI: 10.1590/0001-3765202020181123.32236299 Open DOISearch in Google Scholar

Illán, J.G., Gutiérrez, D., Diez, S.B. & Wilson R.J. (2012). Elevational trends in butterfly phenology: implications for species responses to climate change. Ecol. Entomol., 37(2), 134–144. DOI: 10.1111/j.1365-2311.2012.01345.x. Open DOISearch in Google Scholar

Janzen, D.H. (1973). Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54(3), 687–708. DOI: 10.2307/1935359. Open DOISearch in Google Scholar

Jenkins, D.G. & Ricklefs R.E. (2011). Biogeography and ecology: two views of one world. Philos. Trans. R. Soc. B Biol. Sci., 366(1576), 2331–2335. DOI: 10.1098/rstb.2011.0064.313043421768149 Open DOISearch in Google Scholar

Kaplan, R.H. & Phillips P.C. (2006). Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution, 60(1), 142–156. https://www.jstor.org/stable/409526910.1111/j.0014-3820.2006.tb01089.x Search in Google Scholar

Kharouba, H.M., Paquette, S.R., Kerr, J.T. & Vellend M. (2014). Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology, 20(2), 504–514. DOI: 10.1111/gcb.12429.24249425 Open DOISearch in Google Scholar

Khelifa, R. (2017). Spatiotemporal pattern of phenology across geographic gradients in insects. Doctoral dissertation, University of Zurich. Search in Google Scholar

Khelifa, R., Deacon, C., Mahdjoub, H., Suhling, F., Simaika, J.P. & Samways M.J. (2021). Dragonfly conservation in the increasingly stressed African Mediterranean-type ecosystems. Frontiers in Environmental Science, 9, 660163. DOI: 10.3389/fenvs.2021.660163. Open DOISearch in Google Scholar

Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. DOI: 10.1016/j.tree.2007.09.006.17988759 Open DOISearch in Google Scholar

Laiolo, P., Illera, J.C. & Obeso J.R. (2013). Local climate determines intra-and interspecific variation in sexual size dimorphism in mountain grasshopper communities. J. Evol. Biol., 26(10), 2171–2183. DOI: 10.5061/dryad. c5097. Open DOISearch in Google Scholar

Laiolo, P. & Obeso J.R. (2017). Life-history responses to the altitudinal gradient. In J. Catalan, J.M. Ninot & M.M. Aniz (Eds.), High mountain conservation in a changing world (pp. 253–283). Cham: Springer. DOI: 10.1007/978-3-319-55982-7. Open DOISearch in Google Scholar

Liao, W.B., Lu, X. & Jehle R. (2014). Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew’s toad. J. Zool., 293(2), 84–91. DOI: 10.1111/jzo.12122. Open DOISearch in Google Scholar

Lieth, H. (Ed.) (2013). Phenology and seasonality modeling (Vol. 8). Springer Science & Business Media. Search in Google Scholar

Lissner, J. (2011). The spiders of Europe and Greenland. http://www.jorgenlissner.dk Search in Google Scholar

Machado, G., Buzatto, B.A., García-Hernández, S. & Macías-Ordóñez R. (2016). Macroecology of sexual selection: a predictive conceptual framework for large-scale variation in reproductive traits. Am. Nat., 188(S1), S8–S27. DOI: 10.1086/687575.27513913 Open DOISearch in Google Scholar

McCain, C.M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob. Ecol. Biogeogr., 16(1), 1–13. DOI: 10.1111/j.1466-8238.2006.00263.x. Open DOISearch in Google Scholar

McCoy, E.D. (1990). The distribution of insects along elevational gradients. Oikos, 58(3), 313–322. 10.2307/354522210.2307/3545222 Search in Google Scholar

Muff, P., Kropf, C., Frick, H., Nentwig, W. & Schmidt-Entling M. (2009). Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conservation and Diversity, 2(1), 36–44. DOI: 10.1111/j.1752-4598.2008.00037.x. Open DOISearch in Google Scholar

Pitnick, S.S., Hosken, D.J. & Birkhead T.R. (Eds.) (2008). Sperm biology: an evolutionary perspective. Academic Press. Search in Google Scholar

Platnick N.I. (2011). The World Spider Catalog. Version 12.0. The American Museum of Natural History. Search in Google Scholar

R Core Team (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/ Search in Google Scholar

Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern?. Ecography, 18(2), 200–205. DOI: 10.1111/j.1600-0587.1995. tb00341.x. Open DOISearch in Google Scholar

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Lett., 8(2), 224–239. DOI: 10.1111/j.1461-0248.2004.00701.x. Open DOISearch in Google Scholar

Rao, D. (2017). Habitat selection and dispersal. In Behaviour and Ecology of Spiders (pp. 85–108). Springer, Cham. DOI: 10.1007/978-3-319-65717-2_4 Open DOISearch in Google Scholar

Reed, D.H. & Nicholas A.C. (2008). Spatial and temporal variation in a suite of life-history traits in two species of wolf spider. Ecol. Entomol., 33(4), 488–496. DOI: 10.1111/j.1365-2311.2008.00994.x. Open DOISearch in Google Scholar

Roff, D. (Ed.) (1993). Evolution of life histories: theory and analysis. Springer Science & Business Media. Search in Google Scholar

Rypstra, A.L., Carter, P.E., Balfour, R.A. & Marshall S.D. (1999). Architectural features of agricultural habitats and their impact on the spider inhabitants. Journal of Arachnology, 27, 371–377. Search in Google Scholar

Schmalhofer, V.R. (2001). Tritrophic interactions in a pollination system: impacts of species composition and size of flower patches on the hunting success of a flower-dwelling spider. Oecologia, 129(2), 292–303. DOI: 10.1007/s00442010072628547608 Open DOISearch in Google Scholar

Stamou, G.P. (1998). Arthropods of Mediterranean-type ecosystems. Berlin, New York, London: Springer. DOI: 10.1007/978-3-642-79752-1. Open DOISearch in Google Scholar

Stańska, M. & Stański T. (2017). Body size distribution of spider species in various forest habitats. Pol. J. Ecol., 65(4), 359–370. DOI: 10.3161/15052 249PJE2017.65.4.005. Open DOISearch in Google Scholar

Stańska, M., Stański, T., Wielgosz, E. & Hajdamowicz I. (2018). Impact of habitat complexity on body size of two spider species, Alopecosa cuneata and A. pulverulenta (Araneae, Lycosidae), in river valley grasslands. Pol. J. Environ. Stud., 27(2), 853–859. DOI: 10.15244/pjoes/75806. Open DOISearch in Google Scholar

Sundqvist, M.K., Sanders, N.J. & Wardle D.A. (2013). Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261–280. DOI: 10.1146/annurev-ecolsys-110512-135750. Open DOISearch in Google Scholar

Valenzuela-Sánchez, A., Cunningham, A.A., & Soto-Azat C. (2015). Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest. Frontiers in Zoology, 12, 37. DOI: 10.1186/s12983-015-0132-y.469037926705403 Open DOISearch in Google Scholar

Whitehouse, M.E., Hardwick, S., Scholz, B.C., Annells, A.J., Ward, A., Grundy, P.R. & Harden S. (2009). Evidence of a latitudinal gradient in spider diversity in Australian cotton. Austral Ecol., 34(1), 10–23. DOI: 10.1111/j.1442-9993.2008.01874.x. Open DOISearch in Google Scholar

Whitney, K.D. (2004). Experimental evidence that both parties benefit in a facultative plant–spider mutualism. Ecology, 85(6), 1642–1650. https://www.jstor.org/stable/345058910.1890/03-0282 Search in Google Scholar

Wilhelm, F.M. & Schnidler D.W. (2000). Reproductive strategies of Gammarus lacustris (Crustacea: Amphipoda) along an elevation gradient. Funct. Ecol., 14(4), 413–422. DOI: 10.1046/j.1365-2435.2000.00426.x. Open DOISearch in Google Scholar

Willig, M.R. & Bloch C.P. (2006). Latitudinal gradients of species richness: a test of the geographic area hypothesis at two ecological scales. Oikos, 112(1), 163–173. https://www.jstor.org/stable/354856910.1111/j.0030-1299.2006.14009.x Search in Google Scholar

Wolda, H. (1987). Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc., 30(4), 313–323. DOI: 10.1111/j.1095-8312.1987.tb00305.x. Open DOISearch in Google Scholar

World Spider Catalog (2022). World Spider Catalog. Version 23.0. Natural History Museum Bern. http://wsc.nmbe.ch. Search in Google Scholar

Zettel, J. (2000). Alpine Collembola: adaptations and strategies for survival in harsh environments. Zoology, 102, 73–89. Search in Google Scholar

eISSN:
1337-947X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other