Acceso abierto

Assesment of heavy metals concentration in initial soils of post-mining landscapes in Kryvyi Rih District (Ukraine)


Cite

Abrahim, G.M.S. & Parker R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from tamaki estuary, Auckland, New Zealand. Environ. Monit. Assess., 136, 227‒238. DOI: 10.1007/s10661-007-9678-2.17370131 Open DOISearch in Google Scholar

Alfaro, M.R., Montero, A., Ugarte, O.M., do Nascimento, C.W.A., de Aguiar Accioly, A.M., Biondi, C.M. & da Silva Y.J.A.B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environ. Monit. Assess., 187, 4198. DOI: 10.1007/s10661-014-4198-3.25504190 Open DOISearch in Google Scholar

Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P. & Lark R.M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ., 454‒455, 604‒618. DOI: 10.1016/j.scitotenv.2013.03.005.23583985 Open DOISearch in Google Scholar

Angst, G., Mueller, C.W., Angst, S., Pivokonsky, M., Franklin, J., Stahl, P.D. & Frouz J. (2018). Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. J. Environ. Manag., 209, 216‒226. DOI: 10.1016/j.jenvman.2017.12.050.29294447 Open DOISearch in Google Scholar

August, T., Moore, P., Roy, H. & Dick J. (2021). Visual storytelling using National Capability data. UK Centre for Ecology & Hydrology (UKCEH Project: 06948; NERC National Capability LTS-S: UK-SCAPE; NE/R016429/1). Search in Google Scholar

Baghaie, A.H. & Aghili F. (2019). Investigation of heavy metals concentration in soil around a Pb Zn mine and ecological risk assessment. Environmental Health Engineering and Management Journal, 6(3), 151‒156. DOI: 10.15171/EHEM.2019.17. Open DOISearch in Google Scholar

Bielyk, Y., Savosko, V., Lykholat, Y., Heilmeier, H. & Grygoryuk I. (2020). Macronutrients and heavy metals contents in the leaves of trees from the devastated lands at Kryvyi Rih District (Central Ukraine). E3S Web of Conferences, 166, 01011. DOI: 10.1051/e3sconf/202016601011. Open DOISearch in Google Scholar

Bulmer, M.G. (1979). Principles of statistics. New York: Dover Publications Inc. Search in Google Scholar

de Lima, H.M. & Mendanha F.O. (2019). Assessment of the effects of vegetational cover on the long-term stability of a waste rock dump. REM - International Egineering Journal, 72(4), 667‒674. DOI: 10.1590/0370-44672018720176. Open DOISearch in Google Scholar

de San Miguel, V., Stone, T., Braimbridge M. & Mackenzie S. (2019). Roy Hill waste landform design and construction process. In Proceedings of the 13th International Conference on Mine Closure (pp. 407-418). 3‒5 September 2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/ACG_rep/1915_33_Braimbridge. Open DOISearch in Google Scholar

Demkova, L., Jezny, T. & Bobuľska L. (2017). Assessment of soil heavy metal pollution in a former mining area – before and after the end of mining activities. Soil and Water Research, 12, 229‒236. DOI: 10.17221/107/2016-SWR. Open DOISearch in Google Scholar

Dolezalova Weissmannova, H. & Pavlovsky J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ. Monit. Asses., 189, 616. DOI: 10.1007/s10661-017-6340-5.29116419 Open DOISearch in Google Scholar

Fazekas, J., Fazekasova, D., Hronec, O., Benkova, E. & Boltiziar M. (2018). Contamination of soil and vegetation at a magne site mining area in Jelsava-Lubenik (Slovakia). Ekológia (Bratislava), 37(2), 101‒111. DOI: 10.2478/eko-2018-0010. Open DOISearch in Google Scholar

Gryshko, V.M., Syshchykov, D.V., Piskova, O.M., Danilchuk, O.V. & Mashtaler N.V. (2012). Heavy metals: entering to soil, translocation in plants and ecological danger (in Ukrainian). Donetsk: Donbas. Search in Google Scholar

Gwenzi, W. (2021). Rethinking restoration indicators and end-points for severely degraded post-mining landscapes in light of novel ecosystems. Geoderma, 387(1), 14944. DOI: 10.13140/RG.2.2.32972.03208. Open DOISearch in Google Scholar

Hakanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Res., 14(8), 975‒1001. DOI: 10.1016/0043-1354(80)90143-8. Open DOISearch in Google Scholar

Holtra, A. & Zamorska-Wojdyla D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ. Sci. Pollut. Res., 27, 16086‒16099. DOI: 10.1007/s11356-020-08072-0. Open DOISearch in Google Scholar

International Organization for Standardization (2015). Soil quality - Pretreatment of samples for physico-chemical analysis (ISO Standard No. 11464-2015). Geneva: International Organization for Standardization. https://www.iso.org/standard/37718.html. Search in Google Scholar

International Organization for Standardization (2018). Soil quality - Sampling Part 203: Investigation of potentially contaminated sites (ISO Standard No. ISO 18400-203:2018). Geneva: International Organization for Standardization. https://www.iso.org/standard/65226.html. Search in Google Scholar

IUSS Working Group WRB (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO. Search in Google Scholar

Izakovicova, Z. & Petrovic F. (2018). Integrated approach to ustainable land use management. Environments, 5(3), 37. DOI: 10.3390/environments5030037. Open DOISearch in Google Scholar

Kabata-Pendias, A. (2011). Trace elements from soils to plants. Boca Raton: CRS Press, Francis & Taylor Group. Search in Google Scholar

Kowalska, J.B., Mazurek, R., Gąsiorek, M. & Zaleski T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – a review. Environ. Geochem. Health, 40. 2395‒2420. DOI: 10.1007/s10653-018-0106-z. Open DOISearch in Google Scholar

Lacy, H.W.B. (2019). Mine landforms in Western Australia from dump to landform design: review, reflect and a future direction. In Proceedings of the 13th International Conference on Mine Closure (pp. 371‒384). 3‒5 September 2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/ACG_rep/1915_30_Lacy. Open DOISearch in Google Scholar

Loska, K., Wiechulab, D. & Korus I. (2004). Metal contamination of farming soils affected by industry. Environ. In., 30, 159‒165. DOI: 10.1016/S0160-4120(03)00157-0. Open DOISearch in Google Scholar

Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D.M., Probst, M., Gass, S.L.B., Luckeneder, S., Lieber, M. & McCallum I. (2020). A global-scale data set of mining areas. Scientific Data, 7, 289. DOI: 10.1038/s41597-020-00624-w.747897032901028 Open DOISearch in Google Scholar

Mazurek, M., Kowalska, J., Gasiorek, M., Zadrozny, P., Jozefowska, A., Zaleski, T., Kepka, W., Tymczuk, M. & Orłowska K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839‒850. DOI: 10.1016/j.chemosphere.2016.10.126.27829506 Open DOISearch in Google Scholar

McDonald, J.H. (2014). Handbook of biolological statistics. Baltimore: Sparky House Publishing. Search in Google Scholar

Mhlongo, S.E., Amponsah-Dacosta, F. & Kadyamatimba A. (2019). Development and application of a methodological tool for prioritization of rehabilitation of abandoned tailings dumps in the Giyani and Musina areas of South Africa. Cogent Engineering, 6(1), 1619894. DOI: 10.1080/23311916.2019.1619894. Open DOISearch in Google Scholar

Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geojournal, 2, 108‒118. Search in Google Scholar

Pansu, M. & Jacques G. (2006). Handbook of soil analysis. Berlin: Springer.10.1007/978-3-540-31211-6 Search in Google Scholar

Polupan, М.І., Solovej, V.B. & Velichko V.A. (2005). Classification of soils at Ukraine (in Ukrainian). Kyiv: Agrarian Science. Search in Google Scholar

Raizada, A. & Dhyani S.K. (2020). Agroforestry approach for the rehabilitation of mine spoils. In J.C. Dagar, S.R. Gupta & D. Teketay (Eds.), Agro-forestry for degraded landscapes (pp. 271‒295). Singapore: Springer. DOI: 10.1007/978-981-15-6807-7_9. Open DOISearch in Google Scholar

Savosko, V., Bielyk, Y., Lykholat, Y., Heilmeier, H., Grygoryuk, I., Khromykh, N. & Lykholat T. (2021). The total content of macronutrients and heavy metals in the soil on devastated lands at Kryvyi Rih Iron Mining & Metal-lurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 30(1), 153‒164. DOI: 10.15421/112114. Open DOISearch in Google Scholar

Savosko, V., Lykholat, Y., Domshyna, K. & Lykholat T. (2018). Ecological and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya (in Ukrainian). Journal of Geology, Geography and Geoecology, 27(1), 116‒130. DOI: 10.15421/111837. Open DOISearch in Google Scholar

Savosko, V., Podolyak, A., Komarova, I. & Karpenko A. (2020a). Modern environmental technologies of healthy soils contaminated by heavy metals and radionuclides. E3S Web of Conferences, 166, 01007. DOI: 10.1051/e3sconf/202016601007. Open DOISearch in Google Scholar

Savosko, V., Tovstolyak, N., Lykholat, Y. & Grygoryuk, I. (2020b). Structure and diversity of urban park stands at Kryvyi Rih ore-mining & metallurgical district, central Ukraine. Agriculture and Forestry, 66(3), 105‒126. DOI: 10.17707/AgricultForest.66.3.10. Open DOISearch in Google Scholar

Savosko, V.M. (2010). Genesis and morphology of the primitive soils in technological landscapes at Kryvbas (in Russian). Problems of Bioindication and Ecology, 15(2), 152‒162. Search in Google Scholar

Savosko, V.M. & Alekseeva K.M. (2007). The systematical analyses of the natural dendroflora in Govtneviy region at Kryvyi Rih (in Russian). Problems of Bioindication and Ecology, 12(2), 16‒23. Search in Google Scholar

Savosko, V.M., Nevyadomsky, M.A. & Kudriava P.Y. (2010). The substrates’s physical and chemical properties of the mine tailings ponds at Kryvbas (in Russian). Problems of Bioindication and Ecology, 15(1), 88‒89. Search in Google Scholar

Savosko, V.M. & Tovstolyak N.V. (2017). Ecological conditions of garden and park territories of former iron mines (Kryvyi Rih Basin, Ukraine) (in Ukrainian). Ukrainian Journal of Ecology, 7(4), 12‒17.10.15421/2017_80 Search in Google Scholar

Savosko, V.N. (2016). Heavy metals in soils at Kryvbas (in Russian). Kryvyi Rih: Dionat. Search in Google Scholar

Sediva, A. & Izakovicova Z. (2015). Assessment of representative landscape types of Skalica District. Ekológia (Bratislava), 34(4), 329–338. DOI: 10.1515/eko-2015-0030. Open DOISearch in Google Scholar

Sinnett, D.E. & Sardo A.M. (2020). Former metal mining landscapes in England and Wales: Five perspectives from local residents. Landsc. Urban Plann., 193, 103685. DOI: 10.1016/j.landurbplan.2019.103685. Open DOISearch in Google Scholar

Soil Survey Staff (2014). Keys to soil taxonomy. Washington: USDA-Natural Resources Conservation Service. Search in Google Scholar

Sparks, D.L. (2002). Environmental soil chemistry. San Diego: Academic Press. Search in Google Scholar

Stanturf, J.A., Callaham, M.A. & Madsen P. (2021). Landscape degradation and restoration. In J.A. Stanturf & M.A. Callaham (Eds.), Soils and landscape restoration (pp. 1‒37). New York: Academic Press. DOI: 10.1016/b978-0-12-813193-0.00001-1. Open DOISearch in Google Scholar

Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39, 611‒627. DOI: 10.1007/s002540050473. Open DOISearch in Google Scholar

Tomlinson, D.L., Wilson, J.C., Harris, C.R. & Jeffrey D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollutant index. Helgol. Wiss. Meeresunters., 33, 566‒575.10.1007/BF02414780 Search in Google Scholar

Urminska, J., Toth, T., Benda Prokeinova, R. & Ondrisik P. (2019). The effect of the selected remediation medium on the cadmium bioavailability in the selected ecosystem in the Southwestern locality of Slovakia. Ekológia (Bratislava), 38(3), 214‒224. DOI: 10.2478/eko-2019-0017. Open DOISearch in Google Scholar

van der Sluis, T., Arts, B., Kok, K., Bogers, M., Busck, Anne G.K., Sepp, K., Loupa-Ramos, I., Pavlis, V., Geamana, N. & Crouzat E. (2019). Drivers of European landscape change: stakeholders’ perspectives through Fuzzy Cognitive Mapping. Landsc. Res., 44(4), 458‒476. DOI: 10.1080/01426397.2018.1446074. Open DOISearch in Google Scholar

Vriens, B., Plante, B., Seigneur, N. & Jamieson H. (2020). Mine waste rock: insights for sustainable hydrogeochemical management. Minerals, 10, 728. DOI: 10.3390/min10090728. Open DOISearch in Google Scholar

Yi, Q. & Cheng H. (2019). Review of heavy metal pollution by mining. E3S Web of Conferences, 118, 04028. DOI: 10.1051/e3sconf/201911804028. Open DOISearch in Google Scholar

Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A. & Umerova A. (2021). Response to moisture dynamic in technosols formed after reclamation at a postmining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40(2), 178‒188. DOI: 10.2478/eko-2021-0020. Open DOISearch in Google Scholar

Zverkovskyy, V.M., Sytnyk, S.A., Lovynska, V.M., Kharytonov, M.M., Lakyda, I.P., Mykolenko, S.Yu., Pardini, G., Margui, E. & Gispert M. (2018). Remediation potential of forest forming tree species within Northern Steppe reclamation stands. Ekológia (Bratislava), 37(1), 69‒81. DOI: 10.2478/eko-2018-0007. Open DOISearch in Google Scholar

eISSN:
1337-947X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other