1. bookVolumen 40 (2021): Edición 2 (June 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1337-947X
Primera edición
24 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Bioindication of Aerotechnogenic Pollution of Agricultural Landscapes Caused by the Activities of Industrial Hubs

Publicado en línea: 17 Jul 2021
Volumen & Edición: Volumen 40 (2021) - Edición 2 (June 2021)
Páginas: 115 - 123
Recibido: 12 Jan 2020
Aceptado: 05 Jul 2020
Detalles de la revista
License
Formato
Revista
eISSN
1337-947X
Primera edición
24 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

The article provides the assessment of the levels of aerotechnogenic pollution caused by the emissions from stationary pollution sources of industrial agglomerations in Zhytomyr, taking into account climatic conditions that affect the dispersion and accumulation of pollutants in soils and vegetation cover of surrounding agricultural landscapes. The examination of dust accumulated on the surface of leaves showed that it contains high concentrations of Mn, Cr, Pb, Ni, and Cu. The bioindication method with the use of white-tip radishes was applied to estimate the extent of aerotechnogenic pollution. The results of the investigation testified to the high informativeness of the offered test objects. The indexes of soil saturation with heavy metals indicated the presence of intensive processes of their accumulation. As a consequence, this territory became unsuitable for agricultural production. The inhibition of growth of radish roots identified the toxicity level of the investigated technogenic substrates as medium and higher than average. Also, there is inverse close correlation relationship between the distance from the emission source and the soil phytotoxicity indicators in all the investigated directions.

Keywords

Baderna, D., Lomazzi, E., Pogliaghi, A., Ciaccia, G., Lodi, M. & Benfenati E. (2015). Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection. Environ. Res., 140, 102‒111. DOI: 10.1016/j.envres.2015.03.023.10.1016/j.envres.2015.03.02325841179 Search in Google Scholar

Berestetskyi, O.A. (1971). Metodu opredelenyia toksychnosty pochv. Kyiv: Urozhai. Search in Google Scholar

Cao, Q., Hu, Q.H., Khan, S., Wang, Z.J., Lin, A.J., Du, X. & Zhu Y.G. (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. J. Hazard. Mater., 148(1‒2), 377‒382. DOI: 10.1016/j.jhazmat.2007.02.050.10.1016/j.jhazmat.2007.02.05017418485 Search in Google Scholar

Dayton, E.A., Basta, N.T., Payton, M.E., Bradham, K.D., Schroder, J.L. & Lanno R.P. (2006). Evaluating the contribution of soil properties to modifying lead phytoavailability and phytotoxicity. Environ. Toxicol. Chem., 25(3), 719‒725. DOI: 10.1897/05-307r.1.10.1897/05-307R.116566156 Search in Google Scholar

Dzhura, N.M., Romanyuk, O.І., Gons›or, Y.An., Cvіlinyuk, O.M. & Terek O.І. (2006). Vikoristannya roslin dlya rekul›tivacії ґruntіv, zabrudnenih naftoyu і naftoproduktami. Ekologіya ta Noosferologіya, 17(1−2), 55–60. Search in Google Scholar

Favas, P.J., Pratas, J. & Prasad M.N.V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytore-mediation and bioindication. Sci. Total Environ., 433, 390‒397. DOI: 10.1016/j.scitotenv.2012.06.091.10.1016/j.scitotenv.2012.06.09122820614 Search in Google Scholar

Fedoniuk, R.H., Fedoniuk, T.P., Zimaroieva, A.A., Pazych, V.M. & Zubova O.V. (2020). Impact of air born technogenic pollution on agricultural soils depending on prevailing winds in polissya region (NW ukraine). Ecological Questions, 31(1), 69-85. DOI: 10.12775/EQ.2020.007.10.12775/EQ.2020.007 Search in Google Scholar

Fedoniuk, T.P., Fedoniuk, R.H., Romanchuk, LD., Petruk, A.A. & Pzych V.M. (2019). The influence of landscape structure on the quality index of surface waters. Journal of Water and Land Development, 43, 56‒63. DOI: 10.2478/jwld-2019-0063.10.2478/jwld-2019-0063 Search in Google Scholar

Fedonyuk, T.P., Fedoniuk, R.H., Zymaroieva, A.A., Pazych, V.M. & Aristarkhova E.O. (2020). Phytocenological approach in biomonitoring of the state of aquatic ecosystems in ukrainian polesie. Journal of Water and Land Development, 44, 65−74. DOI: 10.24425/jwld.2019.127047. Search in Google Scholar

Fedorchak, E. (2020). Influence of pollution on photosynthesis pigment content in needles of picea abies and picea pungens in conditions of development of iron ore deposits. Ekológia (Bratislava), 39(1), 1−15. DOI: 10.2478/eko-2020-0001.10.2478/eko-2020-0001 Search in Google Scholar

Gusev, A.S. & Vashukevich N.V. (2016) Soil estimation and land use in the impact zone of metallurgical factories (Middle Urals, Russia). Wschodnioeuropejskie Czasopismo Naukowe, 8(6), 45‒50. Search in Google Scholar

Gyekye, K.A. (2013). An assessment of toxic in urban soils using garden cress (Lepidium sativum) in Vasileostrovsky Ostrov and Elagin Ostrov, Saint Petersburg, Russia. Journal of Geography and Geology, 5(4), 63. DOI: 10.5539/jgg.v5n4p63.10.5539/jgg.v5n4p63 Search in Google Scholar

Jandová, V., Bucková, M., Hegrová, J. & Huzlík J. (2020). Effect of chlorides from chemical de-icing agents on soil contamination depending on the distance from road and its effects on living organisms. Ekológia (Bratisla-Ekológia (Bratislava), 39(4), 301−309. DOI: 10.2478/eko-2020-0024.10.2478/eko-2020-0024 Search in Google Scholar

Jośko, I. & Oleszczuk P. (2013). Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemo-sphere, 92(1), 91‒99. DOI: 10.1016/j.chemosphere.2013.02.048.10.1016/j.chemosphere.2013.02.04823541360 Search in Google Scholar

Kharytonov, M.M., Kroik, A.A., Vinnichenko, O.M. & Shupranova L.V. (2008). Air pollution assessment related with large industrial city activities. In I. Barnes & M.M. Kharytonov (Eds.), Simulation and assessment of chemical processes in a multiphase environment (pp. 385‒393). Netherlands: Springer. DOI: 10.1007/978-1-4020-8846-9_31.10.1007/978-1-4020-8846-9_31 Search in Google Scholar

Kharytonov, M.M., Benselhoub, A., Klimkina, I., Bouhedja, A., Idres, A. & Aissi A. (2016). Air pollution mapping in the Wilaya of Annaba (NE of Algeria). Mining Science, 23, 183‒189. DOI: 10.5277/msc162315. Search in Google Scholar

Kharytonov, M.M., Stankevich, S.A., Titarenko, O.V., Weisssmannová, H.D., Klimkina, I.I. & Frolova L.A. (2020). Geostatistical and geospatial assessment of soil pollution with heavy metals in pavlograd city (ukraine). Ecological Questions, 31(2), 47−61. DOI: 10.12775/EQ.2020.013.10.12775/EQ.2020.013 Search in Google Scholar

Lozanovskaya, I.N. (1998). Ekologiya i ohrana biosferyi pri himicheskom zagryaznenii. Higher School. Search in Google Scholar

Maňkovská, B. & Oszlányi J. (2010). Long term air pollution studies (1990-2005) in báb research sites using the moss biomonitoring technique. Ekoló-Ekológia (Bratislava), 29(1), 40−46. DOI: 10.4149/ekol-2010-01-40. Search in Google Scholar

Martin, D., Vollenweider, P., Buttler, A. & Günthardt-Goerg M.S. (2006). Bio-indication of heavy metal contamination in vegetable gardens. For. Snow Landsc. Res., 80(2), 169‒180. Search in Google Scholar

McBride, M.B. & Martínez C.E. (2000). Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials. Environ. Sci. Technol., 34(20), 4386‒4391. DOI: 10.1021/es0009931.10.1021/es0009931 Search in Google Scholar

Miroshnychenko, M.M. & Krivitska I.A. (2016). The phytotoxicity of soils in urban landscapes of Mariupol city. AgroChemistry and Soil Science, 85, 6‒11. DOI: 10.31073/acss85-01.10.31073/acss85-01 Search in Google Scholar

Romanchuck, L.D., Fedonyuk, T.P. & Fedonyuk R.G. (2017a). The model of landscape vegetation influence on the mass transfer processes. Biosystems Diversity, 25(3), 203–209. DOI: 10.15421/011731.10.15421/011731 Search in Google Scholar

Romanchuck, L.D., Fedonyuk, T.P. & Khant G.O. (2017b). Radiomonitoring of plant products and soils of Polissia during the long-term period after the disaster at the Chornobyl Nuclear Power Plant. Regulatory Mechanisms in Biosystems, 8(3), 444–454. DOI: 10.15421/021769.10.15421/021769 Search in Google Scholar

Romanchuk, L., Fedonyuk, T., Pazych, V., Fedonyuk, R., Khant, G. & Petruk А. (2018). Assessment of the Stability of Aquatic Ecosystems Development on the Basis of Indicators of the Macrophytes Fluctuating Asymmetry. Eastern-European Journal of Enterprise Technologies, 11(94), 54–61. DOI: 10.15587/1729-4061.2018.141055.10.15587/1729-4061.2018.141055 Search in Google Scholar

Rudin, S.M., Murray, D.W. & Whitfeld T.J. (2017). Retrospective analysis of heavy metal contamination in Rhode Island based on old and new her-barium specimens1. Applications in Plant Sciences, 5(1), 1600108. DOI: 10.3732/apps.1600108.10.3732/apps.1600108523191528090410 Search in Google Scholar

Yusypiva, T. & Miasoid H. (2019). The state of bio-ecological characteristics of the one-year shoots of robinia pseudoacacia L. under the conditions of industrial pollution. Ekológia (Bratislava), 38(3), 240−252. DOI: 10.2478/eko-2019-0019.10.2478/eko-2019-0019 Search in Google Scholar

Zymaroieva, A., Zhukov, O., Fedonyuk, T. & Pinkina T. (2020). The spatio-temporal trend of rapeseed yields in ukraine as a marker of agro-economic factors influence. Agronomy Research, 18(Special Issue 2), 1584−1596. DOI: 10.15159/AR.20.119. Search in Google Scholar

Zymaroieva, A., Zhukov, O., Fedoniuk, T., Pinkina, T. & Vlasiuk V. (2021). Edaphoclimatic factors determining sunflower yields spatiotemporal dynamics in northern ukraine. OCL - Oilseeds and Fats, Crops and Lipids, 28, 26. DOI: 10.1051/ocl/2021013.10.1051/ocl/2021013 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo