Acceso abierto

Fitting Competing Models of the Population Abundance Distribution: Land Snails from Nikopol Manganese Ore Basin Technosols


Cite

Arruda, J.A. (2014). The land snails of a partially reclaimed abandoned coal mine site. Trans. Kans. Acad. Sci., 117(1−2), 15–20. DOI: 10.1660/062.117.0103.10.1660/062.117.0103Open DOISearch in Google Scholar

Balashov, I.A., Kramarenko, S.S., Zhukov, A.V., Shklyaruk, A.N., Baidashnikov, A.A. & Vasyliuk A.V. (2013). Contribution to the knowledge of terrestrial molluscs in southeastern Ukraine. Malacologica Bohemoslovaca, 12, 62–69.10.5817/MaB2013-12-62Search in Google Scholar

Beauchamp, G. (2011). Fit of aggregation models to the distribution of group sizes in Northwest Atlantic seabirds. Mar. Ecol. Prog. Ser., 425, 261–268. https://www.jstor.org/stable/2487464510.3354/meps09022Search in Google Scholar

Bonabeau, E., Dagorn, L. & Freon P. (1999). Scaling in animal group-size distributions, PANAS, 96, 4472–4477. DOI: 10.1073/pnas.96.8.4472.10.1073/pnas.96.8.44721635610200286Open DOISearch in Google Scholar

Calenge, C. & Basille M. (2008). A general framework for the statistical exploration of the ecological niche. J. Theor. Biol., 252(4), 674–685. DOI: 10.1016/j.jtbi.2008.02.036.10.1016/j.jtbi.2008.02.03618397793Open DOISearch in Google Scholar

Caraco, T. (1980). Stochastic dynamics of avian foraging flocks. Am. Nat., 115(2), 262–275. www.jstor.org/stable/2460597.10.1086/283558Search in Google Scholar

Dvořáková, J. & Horsák M. (2012). Variation of snail assemblages in hay meadows: Disentangling the predictive power of abiotic environment and vegetation. Malacologia, 55(1), 151–162. DOI: 10.4002/040.055.0110.10.4002/040.055.0110Open DOISearch in Google Scholar

Hall, L.S., Krausman, P.R. & Morrison M.L. (1997). The habitat concept and a plea for standard terminology. Wildl. Soc. Bull., 25(1), 173–182. https://www.jstor.org/stable/3783301Search in Google Scholar

Horsák, M., Hájek, M., Tichý, L. & Juřičková L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecol., 32(2), 161–171. DOI: 10.1016/j.actao.2007.03.011.10.1016/j.actao.2007.03.011Open DOISearch in Google Scholar

IUSS Working Group WRB (2007). World reference base for soil resources 2006, first update 2007. World Soil Resources Reports No. 103. Rome: FAO.Search in Google Scholar

Juřičková, L., Horsák, M., Cameron, R., Hylander, K., Mikovcová, A., Hlaváč, J.C. & Rohovec J. (2008). Land snail distribution patterns within a site: The role of different calcium sources. Eur. J. Soil Biol., 44, 172–179. DOI: 10.1016/j.ejsobi.2007.07.001.10.1016/j.ejsobi.2007.07.001Open DOISearch in Google Scholar

Kappes, H., Jordaens, K., Hendrickx, F., Maelfait, J.P., Lens, L. & Backeljau T. (2009). Response of snails and slugs to fragmentation of lowland forests in NW Germany. Landsc. Ecol., 24(5), 685–697. DOI: 10.1007/s10980-009-9342-z.10.1007/s10980-009-9342-zOpen DOISearch in Google Scholar

Kappes, H., Clausius, A. & Topp W. (2012). Historical small scale surface structures as a model for post-mining land reclamation. Restor. Ecol., 20, 322–330. DOI: 10.1111/j.1526-100X.2011.00800.x.10.1111/j.1526-100X.2011.00800.xOpen DOISearch in Google Scholar

Korábek, O., Juřičková, L., Balashov, I. & Petrusek A. (2018). The contribution of ancient and modern anthropogenic introductions to the colonization of Europe by the land snail Helix lucorum Linnaeus, 1758 (Helicidae). Contrib. Zool., 87(2), 61–74. DOI: 10.1163/18759866-08702001.10.1163/18759866-08702001Open DOISearch in Google Scholar

Książkiewicz-Parulska, Z. & Ablett J.D. (2017). Microspatial distribution of molluscs and response of species to litter moisture, water levels and eutrophication in moist, alkaline ecosystems. Belg. J. Zool., 147(1), 37–53. DOI: 10.26496/bjz.2017.3.10.26496/bjz.2017.3Search in Google Scholar

Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Kramarenko, A.S. & Yorkina N.V. (2018). Fitting competing models and evaluation model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems, 9(2), 198–202. DOI: 10.15421/02182910.15421/021829Search in Google Scholar

MacArthur, R.H. (1957). On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA, 43(3), 293–295. DOI: 10.1073/pnas.43.3.293.10.1073/pnas.43.3.293Open DOISearch in Google Scholar

Mandelbrot, B.B. (1983). The fractal geometry of nature. New York: W.H. Freeman and Company.Search in Google Scholar

Martin, K. & Sommer M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J. Biogeogr., 31(4), 531–545. DOI: 10.1046/j.1365-2699.2003.01005.x.10.1046/j.1365-2699.2003.01005.xOpen DOISearch in Google Scholar

Millar, A.J. & Waite S. (1999). Mollusks in coppice woodland. J. Conchol., 36, 25–48.Search in Google Scholar

Motomura, I. (1932). On the statistical treatment of communities. Zoological Magazine, 44, 379–383.Search in Google Scholar

Müller, J., Strätz, C. & Hothorn T. (2005). Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 124(3), 233–242. DOI: 10.1007/s10342-005-0071-9.10.1007/s10342-005-0071-9Open DOISearch in Google Scholar

Nekola, J.C. & Smith T.M. (1999). Terrestrial gastropod richness patterns in Wisconsin carbonate cliff communities. Malacologia, 41(1), 253–270.Search in Google Scholar

Nekola, J.C. (2003). Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Divers. Distrib., 9(1), 55–71. DOI: 10.1046/j.1472-4642.2003.00165.x.10.1046/j.1472-4642.2003.00165.xOpen DOISearch in Google Scholar

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner H. (2018). Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=veganSearch in Google Scholar

Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks and herds. Advances in Biophysics, 22 (1986), 1–94. DOI: 10.1016/0065-227X(86)90003-1.10.1016/0065-227X(86)90003-1Open DOISearch in Google Scholar

Ondina, P., Mato, S., Hermida, J. & Outeiro A. (1998). Importance of soil exchangeable cations and aluminium content on land snail distribution. Appl. Soil Ecol., 9(1−3), 229–232. DOI: 10.1016/S0929-1393(98)00080-8.10.1016/S0929-1393(98)00080-8Open DOISearch in Google Scholar

Ondina, P., Hermida, J., Outeiro, A. & Mato S. (2004). Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Appl. Soil Ecol., 26(1), 1–9. DOI: 10.1016/j.apsoil.2003.10.008.10.1016/j.apsoil.2003.10.008Open DOISearch in Google Scholar

Preston, F.W. (1948). The commonness, and rarity, of species. Ecology, 29 (3), 254–283. DOI: 10.2307/1930989.10.2307/1930989Open DOISearch in Google Scholar

Preston, F. (1962). The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185–215. DOI: 10.2307/1931976.10.2307/1931976Open DOISearch in Google Scholar

Rosin, Z. M., Lesicki, A., Kwiecinski, Z., Skorka, P. & Tryjanowski P. (2017). Land snails benefit from humanalterations in rural landscapes and habitats. Ecosphere, 8(7), e01874. DOI: 10.1002/ecs2.1874.10.1002/ecs2.1874Open DOISearch in Google Scholar

Schenková, V., Horsák, M., Plesková, Z. & Pawlikowski P. (2012). Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. J. Molluscan Stud., 78, 105–111. DOI: 10.1093/mollus/eyr046.10.1093/mollus/eyr046Open DOISearch in Google Scholar

Schilthuizen, M. (2013). Rapid, habitat-related evolution of land snail colour morphs on reclaimed land. Heredity, 110, 247–252. DOI: 10.1038/hdy.2012.74.10.1038/hdy.2012.74366975923149460Open DOISearch in Google Scholar

Szybiak, K., Błoszyk, J., Koralewska-Batura, E. & Gołdyn B. (2009). Small-scale distribution of wintering terrestrial snails in forest site: relation to habitat conditions. Pol. J. Ecol., 57(3), 525–535.Search in Google Scholar

Weaver, K.F., Anderson, T. & Guralnick R. (2006). Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Divers. Distrib., 12(6), 756–766. DOI: 10.1111/j.1472-4642.2006.00289.x.10.1111/j.1472-4642.2006.00289.xOpen DOISearch in Google Scholar

Whittaker, R.H. (1965). Dominance and diversity in land plant communities. Science, 147, 250–260. DOI: 10.1126/science.147.3655.250.10.1126/.147.3655.250Open DOISearch in Google Scholar

Wood, C.C. (1985). Aggregative response of common mergansers (Mergus merganser): predicting flock size and abundance on Vancouver Island salmon streams. Can. J. Fish. Aquat. Sci., 42(7), 1259–1271. DOI: 10.1139/f85-157.10.1139/f85-157Open DOISearch in Google Scholar

Yorkina, N., Maslikova, K., Kunah, O. & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45. www.biotaxa.org/em10.37828/em.2018.17.5Search in Google Scholar

Yorkina, N., Zhukov, O. & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001.10.2478/eko-2019-0001Open DOISearch in Google Scholar

Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: AddisonWesley.Search in Google Scholar

Zipkin, E. F., Leirness, J. B., Kinlan, B. P., O’Connell, A. F. & Silverman, E. D. (2014). Fitting statistical distributions to sea duck count data: implications for survey design and abundance estimation. Statistical Methodology, 17, 67–81. DOI: 10.1016/j.stamet.2012.10.002.10.1016/j.stamet.2012.10.002Open DOISearch in Google Scholar

eISSN:
1337-947X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography