Acceso abierto

Synthesis of Sustainable Superabsorbent Biopolymer: Modified Rice Straw Cellulose with Initiator and Crosslink Agent

,  y   
19 feb 2025

Cite
Descargar portada

Karoyo AH, Wilson LD. A review on the design and hydration properties of natural polymer-based hydrogels. Materials (Basel). 2021;14:1-36. DOI: 10.3390/ma14051095. Search in Google Scholar

Purohit P, Bhatt A, Mittal RK, Abdellattif MH, Farghaly TA. Polymer grafting and its chemical reactions. Front Bioeng Biotechnol. 2023;10:1-22. DOI: 10.3389/fbioe.2022.1044927. Search in Google Scholar

Sunarti TC, Febrian MI, Ruriani E, Yuliasih I. Some properties of chemical cross-linking biohydrogel from starch and chitosan. Int J Biomater. 2019;2019. DOI: 10.1155/2019/1542128. Search in Google Scholar

Irwan A, Syabatini A. Acrylamide (AAM) based superabsorbent polymer grafted on banana weevil starch (Musa paradisiaca). Pros Semirata FMIPA Univ Lampung. 2013:45-54. Available from: www.academia.edu/26856331/Polimer_Superabsorben_Berbasis_Akrilamida_AAM_Tercangkok_Pati_Bonggol_Pisang_Musa_paradisiaca. Search in Google Scholar

Dewanti DP, Ma’rufatin A, Nugroho R. Test of water absorption capacity by cellulose from palm bunches as a super absorbent polymer (SAP) material in disposable diapers. J Rekayasa Lingkung. 2020;12. Available from: https://www.researchgate.net/publication/343604542_Uji_Kapasitas_Absorpsi_Air_Oleh_Selulosa_Dari_Tandan_Sawit_Sebagai_Bahan_Super_Absorbent_Polymer_Sap_Pada_Popok_Sekali_Pakai. Search in Google Scholar

Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021;13. DOI: 10.3390/polym13071105. Search in Google Scholar

Omidian H, Akhzarmehr A, Chowdhury SD. Advancements in cellulose-based superabsorbent hydrogels: Sustainable solutions across industries. Gels. 2024;10. DOI: 10.3390/gels10030174. Search in Google Scholar

Kenawy ER, Elnaby HH, Azaam MM. Synthesis of superabsorbent composite based on chitosan-g-poly(acrylamide)/attapulgite. Polym Bull. 2024;81:3527-43. DOI: 10.1007/s00289-023-04877-4. Search in Google Scholar

Statistical Yearbook of Indonesia 2023. Available from: https://www.bps.go.id/en/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html. Search in Google Scholar

Setiarto RHB. Prospects and potential of utilizing rice straw lignosellulose into compost, silage and biogas through microbial fermentation. J Selulosa. 2016;3:51-66. Available from: https://www.researchgate.net/publication/319039312_Prospek_Dan_Potensi_Pemanfaatan_Lignoselulosa_Jerami_Padi_Menjadi_Kompos_Silase_Dan_Biogas_Melalui_Fermentasi_Mikroba. Search in Google Scholar

Chen C, Chen Z, Chen J, Huang J, Li H, Sun S, et al. Profiling of chemical and structural composition of lignocellulosic biomasses in tetraploid rice straw. Polymers. 2020;12. DOI: 10.3390/polym12020340. Search in Google Scholar

Laya S, Shamina S, Moossa PP. Production of bioplastic from rice straw cellulose. The Pharma Innovation J. 2022;11:1742-4. Available from: https://www.thepharmajournal.com/archives/2022/vol11issue9S/PartV/S-11-5-239-601.pdf Search in Google Scholar

Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2021;33:1-18. DOI: 10.1002/adma.202000619. Search in Google Scholar

Datta R. Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnol Bioeng. 1981;23:2167-70. DOI: 10.1002/bit.260230921. Search in Google Scholar

Abidi N, Cabrales L, Haigler CH. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym. 2014;100:9-16. DOI: 10.1016/j.carbpol.2013.01.074. Search in Google Scholar

Yulianti W, Laila F. Superabsorbent synthesis and characterization of rice straw cellulose. J Sains Dan Terap. 2014;1:46-52. DOI: 10.29244/jstsv.4.1.46-52. Search in Google Scholar

Razali NAM, Ismail MF, Aziz FA. Characterization of nanocellulose from Indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polym Eng Sci. 2021;61:1594-1606. DOI: 10.1002/pen.25683. Search in Google Scholar

Amirah N, Razali M, Sohaimi RM, Nor R, Raja I, Abdullah N, et al. Comparative study on extraction of cellulose fiber from rice Straw waste from chemo-mechanical and pulping method. Polymers (Basel). 2022;14:387. DOI: 10.3390/polym14030387. Search in Google Scholar

Mudiyanselage TK, Neckers DC. Highly absorbing superabsorbent polymer. J Polymer Science Part A. Polym Chem. 2008;46:1357-64. DOI: 10.1002/pola.22476. Search in Google Scholar

Misiewicz J, Głogowski A, Lejcuś K, Marczak D. The characteristics of swelling pressure for superabsorbent polymer and soil mixtures. Materials (Basel). 2020;13:1-13. DOI: 10.3390/ma13225071. Search in Google Scholar

Susmanto P, Putri AR, Nugraha MZ. Production of superabsorbent biopolymer from modified cellulose-based polivinyl alcohol with variation of the number of initiator and crosslink agent. J Ecol Eng. 2023;24:98-108. DOI: 10.12911/22998993/162786. Search in Google Scholar

Chopra H, Bibi S, Kumar S, Khan MS, Kumar P, Singh I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels. 2022;8. DOI: 10.3390/gels8020111. Search in Google Scholar

Kidwell DA. Superabsorbent polymers - media for the enzymatic detection of ethyl alcohol in urine. Anal Biochem. 1989;182:257-61. DOI: 10.1016/0003-2697(89)90590-3. Search in Google Scholar

Abidin AZ, Susanto G, Sastra NMT, Puspasari T. Synthesis and characterization of superabsorbant polymers from acrylamide. J Tek Kim Indones. 2012;11:87-93. DOI: 10.5614/jtki.2012.11.2.5 Search in Google Scholar

Mechtcherine V, Wyrzykowski M, Schröfl C, Snoeck D, Lura P, De Belie N, et al. Application of super absorbent polymers (SAP) in concrete construction - update of RILEM state-of-the-art report. Mater Struct Constr. 2021;54. DOI: 10.1617/s11527-021-01668-z. Search in Google Scholar

Jafari M, Najafi GR, Sharif MA, Elyasi Z. Superabsorbent polymer composites derived from polyacrylic acid: Design and synthesis, characterization, and swelling capacities. Polym Polym Compos. 2021;29:733-9. DOI: 10.1177/0967391120933482. Search in Google Scholar

Zhang M, Zhang S, Chen Z, Wang M, Cao J, Wang R. Preparation and characterization of superabsorbent polymers based on sawdust. Polymers. 2019;11. DOI: 10.3390/polym11111891. Search in Google Scholar

Ninciuleanu CM, Ianchis R, Alexandrescu E, Mihaescu CI, Scomoroscenco C, Nistor CL, et al. The effects of monomer, crosslinking agent, and filler concentrations on the viscoelastic and swelling properties of poly(methacrylic acid) hydrogels: A comparison. Materials. 2021;14. DOI: 10.3390/ma14092305. Search in Google Scholar

Lacoste C, Lopez-Cuesta JM, Bergeret A. Development of a biobased superabsorbent polymer from recycled cellulose for diapers applications. Eur Polym J. 2019;116:38-44. DOI: 10.1016/j.eurpolymj.2019.03.013. Search in Google Scholar

Zhu Q, Barney CW, Erk KA. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater Struct Constr. 2015;48:2261-76. DOI: 10.1617/s11527-014-0308-5. Search in Google Scholar