Cite

[1] Malinowski M, Famielec S. Impact of biochar addition and air-flow rate on ammonia and carbon dioxide concentration in the emitted gases from aerobic biostabilization of waste. Materials. 2022;15:1771. DOI: 10.3390/ma15051771.10.3390/ma15051771891122235269003 Search in Google Scholar

[2] Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ. 2016;556:89-97. DOI: 10.1016/j.scitotenv.2016.03.010.10.1016/j.scitotenv.2016.03.01026974565 Search in Google Scholar

[3] Wolny-Koładka K, Jarosz R, Marcińska-Mazur M, Lošák T, Mierzwa-Hersztek M. Effect of mineral and organic additions on soil microbial composition. Int Agrophys. 2022;36(2):131-8. DOI: 10.31545/intagr/148101.10.31545/intagr/148101 Search in Google Scholar

[4] Lupwayi NZ, Monreal MA, Clayton GW, Grant CA, Johnston AM, Rice WA. Soil microbial biomass and diversity respond to tillage and sulphur fertilisers. Can J Soil Sci. 2001;81:577-89. DOI: 10.4141/S01-010.10.4141/S01-010 Search in Google Scholar

[5] Wyszkowska J, Borowik A, Kucharski M, Kucharski J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013;18:769-96. DOI: 10.5601/jelem.2013.18.4.455.10.5601/jelem.2013.18.4.455 Search in Google Scholar

[6] Bandurska K, Krupa P, Berdowska A, Jatulewicz I, Zawierucha I. Mycoremediation of soil contaminated with cadmium and lead by Trichoderma sp. Ecol Chem Eng S. 2021;28:277-86. DOI: 10.2478/eces-2021-0020.10.2478/eces-2021-0020 Search in Google Scholar

[7] Jarosławiecka AK, Piotrowska-Seget Z. The effect of heavy metals on microbial communities in industrial soil in the area of Piekary Śląskie and Bukowno (Poland). Microbiol Res. 2022;13:626-42. DOI: 10.3390/microbiolres13030045.10.3390/microbiolres13030045 Search in Google Scholar

[8] Gałązka A, Gawryjołek K, Grządziel J, Frąc M, Księżak J. Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant Soil Environ. 2017;63:264-70. DOI: 10.17221/171/2017-PSE.10.17221/171/2017-PSE Search in Google Scholar

[9] Beheshti M, Etesami H, Alikhani HA. Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environ Sci Pollut Res. 2018;25:14752-61. DOI: 10.1007/s11356-018-1682-2.10.1007/s11356-018-1682-229541979 Search in Google Scholar

[10] Górski R, Szopińska D, Dorna H, Rosińska A, Stefańska Z, Lisiecka J. Effects of plant extracts and disinfectant Huva-San TR 50 on the quality of carrot (Daucus carota L.) seeds. Ecol Chem Eng S. 2020;27:617-28. DOI: 10.2478/eces-2020-0039.10.2478/eces-2020-0039 Search in Google Scholar

[11] Soltys L, Myronyuk I, Tatarchuk T, Tsinurchyn V. Zeolite-based composites as slow release fertilisers (review). J Phys Chem Solids. 2020;21:89-104. DOI: 10.15330/pcss.21.1.89-104.10.15330/pcss.21.1.89-104 Search in Google Scholar

[12] Akimbekov N, Qiao X, Digel I, Abdieva G, Ualieva P, Zhubanova A. The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture. 2020;10:147. DOI: 10.3390/agriculture10050147.10.3390/agriculture10050147 Search in Google Scholar

[13] Majchrowska-Safaryan A, Tkaczuk C, Symanowicz B. Effects of the application of a mineral-and-organic fertiliser produced from brown coal on the occurrence and infectious potential of entomopathogenic fungi in soil. J Ecol Eng. 2017;18:140-8. DOI: 10.12911/22998993/70184.10.12911/22998993/70184 Search in Google Scholar

[14] Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertiliser management. Soil Biol Biochem. 2007;39:2971-6. DOI: 10.1016/j.soilbio.2007.05.031.10.1016/j.soilbio.2007.05.031 Search in Google Scholar

[15] Elbl J, Maková J, Javoreková S, Medo J, Kintl A, Lošák T, et al. Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality. Agronomy. 2019;9:485. DOI: 10.3390/agronomy9090485.10.3390/agronomy9090485 Search in Google Scholar

[16] Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, et al. Integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2012;41:D764-72. DOI: 10.1093/nar/gks1049.10.1093/nar/gks1049353117123203881 Search in Google Scholar

[17] Wolińska A, Rekosz-Burlaga H, Goryluk-Salmonowicz A, Błaszczyk M, Stępniewska Z. Bacterial abundance and dehydrogenase activity in selected agricultural soils from Lublin Region. Polish J Environ Stud. 2015;24:6. DOI: 10.15244/pjoes/59323.10.15244/pjoes/59323 Search in Google Scholar

[18] PN-R-04032:1998, The Polish Committee for Standardization, 1998. Soils and mineral deposits - Sampling and determination of the grain size composition. Available from: https://sklep.pkn.pl/pn-r-04032-1998p.html?fbclid=IwAR2Z2scbemFfSaTJsmajzMVhP7JcV5NOJSd-Zjf7heiLYg0xLPAGLykGQoA. Search in Google Scholar

[19] Oleszczuk N, Castro JT, da Silva MM, Korn M, Welz B, Vale MG. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta. 2007;73:862-9. DOI: 10.1016/j.talanta.2007.05.005.10.1016/j.talanta.2007.05.00519073113 Search in Google Scholar

[20] Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci. Plant Anal. 2000;31:1299-396. DOI: 10.1080/00103620009370514.10.1080/00103620009370514 Search in Google Scholar

[21] Thalmann A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden Mittels Triphenyltetrazoliumchlorid (TTC) (Determination of the dehydrogenase activity in soils using triphenyltetrazolium chloride). Landwirtsch Forsch. 1968;21:249-58. Available from: https://chemport-n.cas.org/chemportn/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADyaF1MXksVyksrw%3D&md5=b77f8d25b689aa089b627b99665ee3fb&fbclid=IwAR07xp8aVRY5CECGzuvddjXDKOIwJK DHP37tFcQWc-fSUF3M6ItLNBQ4dUo. Search in Google Scholar

[22] Kopeć M, Mierzwa-Hersztek M, Gondek K, Wolny-Koładka K, Zdaniewicz M, Jarosz R. Biological activity of composts obtained from hop waste generated during the brewing. Biomass Convers Bior. 2020;12:1271-9. DOI: 10.1007/s13399-020-00746-6.10.1007/s13399-020-00746-6 Search in Google Scholar

[23] Atlas R.M. Handbook of Microbiological Media (4th ed.). CRC Press; Boca Raton: 2010. DOI: 10.1201/EBK1439804063.10.1201/EBK1439804063 Search in Google Scholar

[24] Wolny-Koładka K, Żukowski W. Mixed municipal solid waste hygienisation for refuse-derived fuel production by ozonation in the novel configuration using fluidized bed and horizontal reactor. Waste Biomass Valor. 2019;10:575-83. DOI: 10.1007/s12649-017-0087-7.10.1007/s12649-017-0087-7 Search in Google Scholar

[25] Malinowski M. Biostabilization process of undersized fraction of municipal solid waste with biochar addition. J Mater Cycles Waste Manage. 2022;24:2201-15. DOI: 10.1007/s10163-022-01466-x.10.1007/s10163-022-01466-x Search in Google Scholar

[26] Rousk J, Brookes P, Bååth E. Contrasting soil pH effects on fungal and bac terial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbial. 2009;75:1589-96. DOI: 10.1128/AEM.02775-08.10.1128/AEM.02775-08265547519151179 Search in Google Scholar

[27] Zhao Y, Wang X, Yao G, Lin Z, Xu L, Jiang Y, et al. Advances in the effects of biochar on microbial ecological function in soil and crop quality. Sustainability. 2022;14:10411. DOI: 10.3390/su141610411.10.3390/su141610411 Search in Google Scholar

eISSN:
2084-4549
Idioma:
Inglés