Acceso abierto

Influence of Digested Sludge Conditioning on the Dewatering Processes and the Quality of Sludge Liquid


Cite

[1] Grobelak A, Grosser A, Kacprzak M, Kamizela T. Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. J Environ Manage. 2019;234:90–6. DOI: 10.1016/j.jenvman.2018.12.111.10.1016/j.jenvman.2018.12.11130616192Search in Google Scholar

[2] Bień B. The quality of sludge liquids produced in the process of mechanical dewatering of digested sludge. Ecol Chem Eng A. 2017;24(1):65–74. DOI: 10.2428/ecea.2017.24(1)5.Search in Google Scholar

[3] Ren W, Zhou Z, Wan L, Hu D, Jiang LM, Wang L. Optimization of phosphorus removal from reject water of sludge thickening and dewatering process through struvite precipitation. Desalin Water Treat. 2016;57(33):15515–23. DOI: 10.1080/19443994.2015.1072059.10.1080/19443994.2015.1072059Search in Google Scholar

[4] Wielgosiński G, Cichowicz R, Targaszewska A, Wiśniewski J. The use of LCA method to assess environmental impact of sewage sludge incineration plants. Ecol Chem Eng S. 2017;24(2):263–75. DOI: 10.1515/eces-2017-0018.10.1515/eces-2017-0018Search in Google Scholar

[5] Ohm TI, Chae JS, Kim JE, Kim HK, Moon SH. A study on the dewatering of industrial waste sludge by fry-drying technology. J Hazard Mater. 2009;168(1):445–50. DOI: 10.1016/j.jhazmat.2009.02.053.10.1016/j.jhazmat.2009.02.05319272710Search in Google Scholar

[6] Yuan H, Zhu N, Song L. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability. Bioresour Technol. 2010;101(12):4285–90. DOI: 10.1016/j.biortech.2009.12.147.10.1016/j.biortech.2009.12.14720153168Search in Google Scholar

[7] Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manage. 2014;34(1):185–95. DOI: 10.1016/j.wasman.2013.08.024.10.1016/j.wasman.2013.08.02424060290Search in Google Scholar

[8] Escala M, Zumbühl T, Koller Ch, Junge R, Krebs R. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: A feasibility study on a laboratory scale. Energy Fuels. 2013;27(1):454–60. DOI: 10.1021/ef3015266.10.1021/ef3015266Search in Google Scholar

[9] Fukas-Płonka Ł, Janik M. Advantages and disadvantages of drying sewage sludge. Forum Eksploatatora. 2008;5:25–7. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPC1-0012-0065.Search in Google Scholar

[10] Hehlmann J, Benducki P. Drying of a composite formed fuel with dominant fraction of digested sewage sludge. Arch Waste Manage Environ Prot. 2014;16(2):9–18. http://awep.org.Search in Google Scholar

[11] Saveyn H, Meersseman S, Thas O, Van DMP. Influence of polyelectrolyte characteristics on pressure-driven physicochemical dewatering. Colloid Surf A: Physicochem Eng Aspects. 2005;262:40–51. DOI: 10.1016/j.colsurfa.2005.04.006.10.1016/j.colsurfa.2005.04.006Search in Google Scholar

[12] Bień B, Bień J. Coagulant and polyelectrolyte application performance testing in sonicated sewage sludge dewatering. Desalin Water Treat. 2016;57(3):1154–62. DOI: 10.1080/19443994.2014.989632.10.1080/19443994.2014.989632Search in Google Scholar

[13] Saveyn H, Curvers D, Thas O, Van der Meeren P. Optimization of sewage sludge conditioning and pressure dewatering by statistical modelling. Water Res. 2008;42(4–5):1061–74. DOI: 10.1016/j.watres.2007.09.029.10.1016/j.watres.2007.09.02917959216Search in Google Scholar

[14] Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem Eng J. 2010;158:616–22. DOI : 10.1016/j.cej.2010.02.021.10.1016/j.cej.2010.02.021Search in Google Scholar

[15] Mohammad TA, Mohamed EH, Megat J, Megat MN, Ghazali AH. Dual polyelectrolytes incorporating Moringa oleifera in the dewatering of sewage sludge. Desalin Water Treat. 2015;55(13):3613–20. DOI: 10.1080/19443994.2014.946728.10.1080/19443994.2014.946728Search in Google Scholar

[16] Hussain J, Jami MS, Suleyman A, Muyibi SA. Enhancement of dewatering properties of kaolin suspension by using cationic polyacrylamide (PAM-C) flocculant and surfactants. AJBAS. 2012;6(1):70–3. http://irep.iium.edu.my/17706/.Search in Google Scholar

[17] Kowalczyk A, Piecuch T. Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels. Arch Environ Prot. 2016;42(1):3–18. DOI: 10.1515/aep-2016-0001.10.1515/aep-2016-0001Search in Google Scholar

[18] Gao N, Li Z, Quan C, Miskolczi N, Egedy A. A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification. J Anal Appl Pyrol. 2019;139:187–95. DOI:10.1016/j.jaap.2019.02.003.10.1016/j.jaap.2019.02.003Search in Google Scholar

[19] Nguyena TP, Hilala N, Hankinsb NP, Novakc JT. Characterization of synthetic and activated sludge and conditioning with cationic polyelectrolytes. Desalination. 2008:227:103–10. DOI: 10.1016/j.desal.2007.07.016.10.1016/j.desal.2007.07.016Search in Google Scholar

[20] Bien B, Bien JD. Use of inorganic coagulants and polyelectrolytes to sonicated sewage sludge for improvement of sludge dewatering. Desalin Water Treat. 2014:52(19–21):3767–74. DOI: 10.1080/19443994.2014.884752.10.1080/19443994.2014.884752Search in Google Scholar

[21] Chen Z, Zhang W, Wang D, Ma T, Bai R. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical reflocculation with inorganic coagulants: Kinetics of enzymatic reaction and reflocculation morphology. Water Res. 2015;83:367–76. DOI: 10.1016/j.watres.2015.06.026.10.1016/j.watres.2015.06.02626196306Search in Google Scholar

[22] Boráň J, Houdková L, Elsäßer T. Processing of sewage sludge: Dependence of sludge dewatering efficiency on amount of flocculant. Resour Conserv Recycl. 2010;54(5): 278–82. DOI: 10.1016/j.resconrec.2009.08.010.10.1016/j.resconrec.2009.08.010Search in Google Scholar

[23] Jin LY, Zhang P, Zhang G, Li J. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalin Water Treat. 2016;57(60):29377–83. DOI: 10.1080/19443994.2016.1144085.10.1080/19443994.2016.1144085Search in Google Scholar

[24] Kuglarz M, Bohdziewicz J, Przywara L. The influence of dual conditioning methods on sludge dewatering properties. ACEE. 2008;1(3):103–6. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BSL2-0022-0104.Search in Google Scholar

[25] Wu Y, Zhang P, Zeng G, Liu J, Ye J, Zhang H, et al. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO4/FeCl3/Biochar) for enhancement of waste activated sludge dewaterability. J Taiwan Inst Chem Eng. 2017;74:121–8. DOI: 10.1016/j.jtice.2017.02.004.10.1016/j.jtice.2017.02.004Search in Google Scholar

[26] Wójcik M, Stachowicz F. Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency. Powder Technol. 2019;344:96–102. DOI: 10.1016/j.powtec.2018.12.001.10.1016/j.powtec.2018.12.001Search in Google Scholar

[27] Chen Z, Zhang W, Wang D, Ma T, Bai R, Yu D. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical reflocculation. Water Res. 2016;103:170–81. DOI: 10.1016/j.watres.2016.07.018.10.1016/j.watres.2016.07.018Search in Google Scholar

[28] Changya Ch, Panyue Z, Guangming Z, Jiuhua D, Yu Z, Haifeng L. Sewage sludge conditioning with coal fly ash modified by sulfuric. Acid Chem Eng J. 2010;158(3):616–22. DOI: 10.1016/j.cej.2010.02.021.10.1016/j.cej.2010.02.021Search in Google Scholar

[29] Ying Q, Khagendra BT, Andrew FAH. Application of filtration aids for improving sludge dewatering properties - A review. Chem Eng J. 2011;171(2):373–84. DOI: 10.1016/j.cej.2011.04.060.10.1016/j.cej.2011.04.060Search in Google Scholar

[30] Yang J, Chen S, Li H. Dewatering sewage sludge by a combination of hydrogen peroxide, jute fiber wastes and cationic polyacrylamide. ESPR. 2018;128:78–84. DOI: 10.1016/j.ibiod.2016.10.027.10.1016/j.ibiod.2016.10.027Search in Google Scholar

[31] Ding A, Qu F, Guo S, Ren Y, Xu G, Li G. Effect of adding wood chips on sewage sludge dewatering in a pilot-scale plate-and-frame filter press proces. RSC Adv. 2014;4(47):24762–8. DOI: 10.1039/c4ra03584d.10.1039/C4RA03584DSearch in Google Scholar

[32] Bianchini A, Bonfiglioli L, Pellergini M, Saccani C. Sewage sludge management in Europe: a critical analysis of data quality. IJEWM. 2016;18(3):226–38. DOI: 10.1504/IJEWM.2016.10001645.10.1504/IJEWM.2016.10001645Search in Google Scholar

[33] Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H. Sewage sludge conditioning with coal fly ash modified by sulphuric acid. Chem Eng J. 2016;158:616–22. DOI: 10.1016/j.cej.2010.02.021.10.1016/j.cej.2010.02.021Search in Google Scholar

[34] Zhao YQ. Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder. Colloids Surf. A Physicochem Eng Asp. 2002;211(2–3):205–12. DOI: 10.1016/S0927-7757(02)00277-7.10.1016/S0927-7757(02)00277-7Search in Google Scholar

[35] Zhu C, Li F, Zhang P, Ye J, Lu P, Wang H. Combined sludge conditioning with NaCl cationic polyacrylamide-rice husk powders to improve sludge dewaterability. Powder Technol. 2018;336:191–8. DOI: 10.1016/j.powtec.2018.05.042.10.1016/j.powtec.2018.05.042Search in Google Scholar

[36] MacDonald BA, Oakes KD, Adams M. Molecular disruption through acid injection into waste activated sludge - a feasibility study to improve the economics of sludge dewatering. J Clean Prod. 2017;176:966–75. DOI: 10.1016/j.jclepro.2017.12.014.10.1016/j.jclepro.2017.12.014Search in Google Scholar

[37] Li CX, Wang XD, Zhang GY, Yu GW, Lin JJ, Wang Y. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res. 2017;117:49–57. DOI: 10.1016/j.watres.2017.03.047.10.1016/j.watres.2017.03.04728390235Search in Google Scholar

[38] Mobaraki M, Semken RS, Mikkola A, Pyrhonen J. Enhanced sludge dewatering based on the application of high-power ultrasonic vibration. Ultrasonics. 2018;84:438–45. DOI: 10.1016/j.ultras.2017.12.002.10.1016/j.ultras.2017.12.00229257985Search in Google Scholar

[39] Liu JB, Wei YS, Li K, Tong J, Wang YW, Jia RL. Microwave-acid pretreatment: a potential process for enhancing sludge dewaterability. Water Res. 2016;90:225–34. DOI: 10.1016/j.watres.2015.12.012.10.1016/j.watres.2015.12.01226734782Search in Google Scholar

[40] Wang LP, Li AM. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res. 2015;68:291–303. DOI: 10.1016/j.watres.2014.10.016.10.1016/j.watres.2014.10.01625462737Search in Google Scholar

[41] Sun FQ, Xiao KK, Zhu WY, Withanage N, Zhou Y. Enhanced sludge solubilization and dewaterability by synergistic effects of nitrate and freezing. Water Res. 2018;130:208–14. DOI: 10.1016/j.watres.2017.11.066.10.1016/j.watres.2017.11.06629223781Search in Google Scholar

[42] Deng W, Ma J, Xiao J, Wang L, Su Y. Orthogonal experimental study on hydrothermal treatment of municipal sewage sludge for mechanical dewatering followed by thermal drying. J Clean Prod. 2019;209:236–49. DOI: 10.1016/j.jclepro.2018.10.261.10.1016/j.jclepro.2018.10.261Search in Google Scholar

[43] Ramnath L,Gunaratna KR. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles. Bioresour Technol. 2014;153:333–9. DOI: 10.1016/j.biortech.2013.12.003.10.1016/j.biortech.2013.12.00324378779Search in Google Scholar

[44] Ealias AM, Jose JV, Saravanakumar MP. Biosynthesised magnetic iron nanoparticles for sludge dewatering via Fenton process. Environ Sci Pollut Res. 2016;23(21):21416–30. DOI: 10.1007/s11356-016-7351-4.10.1007/s11356-016-7351-427502568Search in Google Scholar

[45] You G, Wang P, Hou J, Wang Ch, Xu Y, Miao L, et al. Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism. Water Res. 2017;118:93–103. DOI: 10.1016/j.watres.2017.04.011.10.1016/j.watres.2017.04.01128414964Search in Google Scholar

[46] Boyle NJ, Evans GM. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges. Water Sci Technol. 2013;67(9):2117–23. DOI: 10.2166/wst.2013.097.10.2166/wst.2013.09723656957Search in Google Scholar

[47] EN 14701-1:2006 - Characterisation of sludges - filtration properties - part 1: capillary suction time (CST). https://webstore.ansi.org/Standards/DIN/DINEN147012006.Search in Google Scholar

[48] EN 14701-2:2013 - Characterisation of sludges - filtration properties - part 2: Determination of the specific resistance to filtration. https://webstore.ansi.org/Standards/DIN/DINEN147012013.Search in Google Scholar

[49] PN-ISO 6060:2006 - Jakość wody - Oznaczanie chemicznego zapotrzebowania tlenu (Water quality -Determination of chemical oxygen demand). https://sklep.pkn.pl/pn-iso-6060-2006p.html.Search in Google Scholar

[50] Zhu Ch, Zhang P, Wang H, Ye J. Conditioning of sewage sludge via combined ultrasonication-flocculation skeleton building to improve sludge dewaterability. Ultrason Sonochem. 2018;40:353–60. DOI: 10.1016/j.ultsonch.2017.07.028.10.1016/j.ultsonch.2017.07.02828946434Search in Google Scholar

[51] Pillin S, Bhunia P, Yan S, LeBlanc R, Tyagi R, Surampalli R. Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem. 2011;18:1–18. DOI: 10.1016/j.ultsonch.2010.02.014.10.1016/j.ultsonch.2010.02.01420471901Search in Google Scholar

[52] Hosnani E, Nosrati M, Shojasadati S. Role of extracellular polymeric substances in dewaterability of untreated, sonicated and digested waste activated sludge. J Environ Health Sci Eng. 2010;7:395–400. https://hosnani.com/pdf/hosnani-nosrati-isi-article.pdf.Search in Google Scholar

[53] Wang J., Chen C, Gao Q, Li T, Zhu F. Relationship between the characteristics of cationic polyacrylamide and sewage sludge dewatering performance in a full-scale plant. Proc Environ Sci. 2012;16:409–17. DOI: 10.1016/j.proenv.2012.10.057.10.1016/j.proenv.2012.10.057Search in Google Scholar

[54] Lu L, Pan Z, Hao N, Peng W. A novel acrylamide-free flocculant and its application for sludge dewatering. Water Res. 2014;57:304–12. DOI: 10.1016/j.watres.2014.03.047.10.1016/j.watres.2014.03.04724731856Search in Google Scholar

[55] Huan L, Jin YY, Mahar RB, Wang ZY, Nie YF. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J Hazard Mater. 2009;161(2–3):1421–6. DOI: 10.1016/j.jhazmat.2008.04.113.10.1016/j.jhazmat.2008.04.11318547717Search in Google Scholar

[56] Zhang G, Wan T. Sludge conditioning by sonication and sonication-chemical methods. Procedia Environ Sci. 2012;16:368–77. DOI: 10.1016/j.proenv.2012.10.053.10.1016/j.proenv.2012.10.053Search in Google Scholar

[57] Bień B. The influence of the way of conditioning on the quality of sludge liquid after the process of mechanical dewatering of sewage sludge. Proc ECOpole. 2017;11(2):471–8. DOI: 10.2429/proc.2017.11(2)051.Search in Google Scholar

eISSN:
2084-4549
Idioma:
Inglés