Acceso abierto

Networking Salt Inducible Kinase 1 Regulatory Perturbations on Type 2 Diabetes- Breast Cancer Co-Morbidity Associated Molecular Bridge

,  y   
22 ene 2025

Cite
Descargar portada

M. Krause and G. De Vito, ‘Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition’, Nutrients, vol. 15, no. 19, p. 4279, Oct. 2023, doi: 10.3390/nu15194279. Search in Google Scholar

International Diabetes Federation, ‘IDF Diabetes Atlas, 10th edn.’, Brussels, Belgium, 2021. [Online]. Available: https://www.diabetesatlas.org Search in Google Scholar

B. Giri, S. Dey, T. Das, M. Sarkar, J. Banerjee, and S. K. Dash, ‘Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity’, Biomedicine & Pharmacotherapy, vol. 107, pp. 306–328, Nov. 2018, doi: 10.1016/j.biopha.2018.07.157. Search in Google Scholar

M. A. B. Khan, M. J. Hashim, J. K. King, R. D. Govender, H. Mustafa, and J. Al Kaabi, ‘Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends’, J Epidemiol Glob Health, vol. 10, no. 1, pp. 107–111, Mar. 2020, doi: 10.2991/jegh.k.191028.001. Search in Google Scholar

S. Azeem, U. Khan, and A. Liaquat, ‘The increasing rate of diabetes in Pakistan: A silent killer’, Ann Med Surg (Lond), vol. 79, p. 103901, Jun. 2022, doi: 10.1016/j. amsu.2022.103901. Search in Google Scholar

Home et al., ‘9th edition | IDF Diabetes Atlas’. Accessed: Dec. 20, 2023. [Online]. Available: https://diabetesatlas.org/atlas/ninth-edition/ Search in Google Scholar

Home et al., ‘IDF Diabetes Atlas 2021 | IDF Diabetes Atlas’. Accessed: Dec. 20, 2023. [Online]. Available: https://diabetesatlas.org/atlas/tenth-edition/ Search in Google Scholar

F. Bray et al., ‘Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA: A Cancer Journal for Clinicians, vol. 74, no. 3, pp. 229–263, 2024, doi: 10.3322/caac.21834. Search in Google Scholar

Y. Lu et al., ‘Breast cancer risk for women with diabetes and the impact of metformin: A meta-analysis’, Cancer Medicine, vol. 12, no. 10, pp. 11703–11718, 2023, doi: 10.1002/cam4.5545. Search in Google Scholar

P. Boyle et al., ‘Diabetes and breast cancer risk: a meta-analysis’, Br J Cancer, vol. 107, no. 9, pp. 1608–1617, Oct. 2012, doi: 10.1038/bjc.2012.414. Search in Google Scholar

H. Chen, L. S. Cook, M.-T. C. Tang, D. A. Hill, C. L. Wiggins, and C. I. Li, ‘Relationship between Diabetes and Diabetes Medications and Risk of Different Molecular Subtypes of Breast Cancer’, Cancer Epidemiol Biomarkers Prev, vol. 28, no. 11, pp. 1802–1808, Nov. 2019, doi: 10.1158/1055-9965.EPI-19-0291. Search in Google Scholar

I. A. Durrani, A. Bhatti, and P. John, ‘The prognostic outcome of “type 2 diabetes mellitus and breast cancer” association pivots on hypoxia-hyperglycemia axis’, Cancer Cell International, vol. 21, no. 1, p. 351, Jul. 2021, doi: 10.1186/ s12935-021-02040-5. Search in Google Scholar

I. A. Durrani, A. Bhatti, and P. John, ‘Integrated bioinformatics analyses identifying potential biomarkers for type 2 diabetes mellitus and breast cancer: In SIK1-ness and health’, PLoS One, vol. 18, no. 8, p. e0289839, 2023, doi: 10.1371/journal.pone.0289839. Search in Google Scholar

M. S. Sarkar, M. M. Mia, M. A. Amin, M. S. Hossain, and M. Z. Islam, ‘Bioinformatics and network biology approach to identifying type 2 diabetes genes and pathways that influence the progression of breast cancer’, Heliyon, vol. 9, no. 5, p. e16151, May 2023, doi: 10.1016/j.heliyon.2023.e16151. Search in Google Scholar

A. Jagannath et al., ‘The multiple roles of salt-inducible kinases in regulating physiology’, Physiological Reviews, May 2023, doi: 10.1152/physrev.00023.2022. Search in Google Scholar

Z. Sun, Q. Jiang, J. Li, and J. Guo, ‘The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis’, Sig Transduct Target Ther, vol. 5, no. 1, Art. no. 1, Aug. 2020, doi: 10.1038/s41392-020-00265-w. Search in Google Scholar

Y. Zhang et al., ‘Role of salt inducible kinase 1 in high glucose-induced lipid accumulation in HepG2 cells and metformin intervention’, Life Sciences, vol. 173, pp. 107–115, Mar. 2017, doi: 10.1016/j.lfs.2017.02.001. Search in Google Scholar

H. Cheng et al., ‘SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis’, Sci Signal, vol. 2, no. 80, p. ra35, Jul. 2009, doi: 10.1126/scisignal.2000369. Search in Google Scholar

S. Feng et al., ‘Roles of salt-inducible kinases in cancer (Review)’, Int J Oncol, vol. 63, no. 5, p. 118, Aug. 2023, doi: 10.3892/ijo.2023.5566. Search in Google Scholar

Á. Nagy and B. Győrffy, ‘muTarget: A platform linking gene expression changes and mutation status in solid tumors’, International Journal of Cancer, vol. 148, no. 2, pp. 502–511, 2021, doi: 10.1002/ijc.33283. Search in Google Scholar

D. Szklarczyk et al., ‘The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest’, Nucleic Acids Res, vol. 51, no. D1, pp. D638–D646, Jan. 2023, doi: 10.1093/nar/gkac1000. Search in Google Scholar

M. V. Kuleshov et al., ‘Enrichr: a comprehensive gene set enrichment analysis web server 2016 update’, Nucleic Acids Res, vol. 44, no. W1, pp. W90-97, Jul. 2016, doi: 10.1093/ nar/gkw377. Search in Google Scholar

Z. Xie et al., ‘Gene Set Knowledge Discovery with Enrichr’, Curr Protoc, vol. 1, no. 3, p. e90, Mar. 2021, doi: 10.1002/ cpz1.90. Search in Google Scholar

H.-Y. Huang et al., ‘miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions’, Nucleic Acids Res, vol. 50, no. D1, pp. D222–D230, Nov. 2021, doi: 10.1093/nar/gkab1079. Search in Google Scholar

P. Shannon et al., ‘Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks’, Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi: 10.1101/gr.1239303. Search in Google Scholar

B. T. Sherman et al., ‘DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)’, Nucleic Acids Res, vol. 50, no. W1, pp. W216–W221, Jul. 2022, doi: 10.1093/nar/gkac194. Search in Google Scholar

B. Győrffy, ‘Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors’, Innovation (Camb), vol. 5, no. 3, p. 100625, May 2024, doi: 10.1016/j.xinn.2024.100625. Search in Google Scholar

O. Menyhart, W. J. Kothalawala, and B. Győrffy, ‘A gene set enrichment analysis for the cancer hallmarks’, Journal of Pharmaceutical Analysis, p. 101065, Aug. 2024, doi: 10.1016/j.jpha.2024.101065. Search in Google Scholar

N. Safari-Alighiarloo, M. Taghizadeh, M. Rezaei-Tavirani, B. Goliaei, and A. A. Peyvandi, ‘Protein-protein interaction networks (PPI) and complex diseases’, Gastroenterol Hepatol Bed Bench, vol. 7, no. 1, pp. 17–31, 2014. Search in Google Scholar

N. Li, Z. Zhou, L. Zhang, H. Tang, X. Chen, and H. Zhou, ‘High expression of TTC21A predict poor prognosis of colorectal cancer and influence the immune infiltrating level’, Translational Cancer Research, vol. 11, no. 5, May 2022, doi: 10.21037/tcr-21-2674. Search in Google Scholar

I. A. Durrani, P. John, A. Bhatti, and J. S. Khan, ‘Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes’, Heliyon, vol. 10, no. 17, p. e36650, Sep. 2024, doi: 10.1016/j.heliyon.2024. e36650. Search in Google Scholar

X. Wang et al., ‘Identification and verification of four candidate biomarkers for early diagnosis of osteoarthritis by machine learning’, Heliyon, vol. 10, no. 15, p. e35121, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35121. Search in Google Scholar

I. A. Durrani, A. Bhatti, and P. John, ‘Regulatory MicroRNAs in T2DM and Breast Cancer’, Processes, vol. 9, no. 5, Art. no. 5, May 2021, doi: 10.3390/pr9050819. Search in Google Scholar

A. C. Improta-Caria et al., ‘Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms’, World J Diabetes, vol. 15, no. 6, pp. 1187–1198, Jun. 2024, doi: 10.4239/wjd.v15.i6.1187. Search in Google Scholar

P. Lovis et al., ‘Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction’, Diabetes, vol. 57, no. 10, pp. 2728–2736, Oct. 2008, doi: 10.2337/db07-1252. Search in Google Scholar

J. Fu, S. Imani, M.-Y. Wu, and R.-C. Wu, ‘MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential’, Cancers, vol. 15, no. 19, Art. no. 19, Jan. 2023, doi: 10.3390/cancers15194723. Search in Google Scholar

C.-H. Chin, S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin, ‘cytoHubba: identifying hub objects and sub-networks from complex interactome’, BMC Systems Biology, vol. 8, no. 4, p. S11, Dec. 2014, doi: 10.1186/1752-0509-8-S4-S11. Search in Google Scholar

B. Győrffy, ‘Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer’, British Journal of Pharmacology, vol. 181, no. 3, pp. 362–374, 2024, doi: 10.1111/bph.16257. Search in Google Scholar

Z. Sun et al., ‘AKT Blocks SIK1-Mediated Repression of STAT3 to Promote Breast Tumorigenesis’, Cancer Res, vol. 83, no. 8, pp. 1264–1279, Apr. 2023, doi: 10.1158/0008-5472.CAN-22-3407. Search in Google Scholar

L. Ponnusamy and R. Manoharan, ‘Distinctive role of SIK1 and SIK3 isoforms in aerobic glycolysis and cell growth of breast cancer through the regulation of p53 and mTOR signaling pathways’, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1868, no. 5, p. 118975, Apr. 2021, doi: 10.1016/j.bbamcr.2021.118975. Search in Google Scholar

K. Sakamoto, L. Bultot, and O. Göransson, ‘The Salt-Inducible Kinases: Emerging Metabolic Regulators’, Trends in Endocrinology & Metabolism, vol. 29, no. 12, pp. 827–840, Dec. 2018, doi: 10.1016/j.tem.2018.09.007. Search in Google Scholar

X. Zhang et al., ‘Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review)’, Oncology Reports, vol. 52, no. 6, pp. 1–16, Dec. 2024, doi: 10.3892/or.2024.8828. Search in Google Scholar

K. Tian et al., ‘Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis’, Molecular and Cellular Biology, Oct. 2024, Accessed: Nov. 26, 2024. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/10985549.2024.2385633 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencias de la vida, Genética, Biotecnología, Bioinformática, Ciencias de la vida, otros