Cite

Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. Mater Today. 2016;19(9):516-532. doi:10.1016/j.mattod.2016.02.020 Search in Google Scholar

Ghosh B. Artificial cell design: reconstructing biology for life science applications. Emerg Top Life Sci. 2022;6(6):619-627. doi:10.1042/ETLS20220050 Search in Google Scholar

Lu Y, Allegri G, Huskens J. Vesicle-based artificial cells: materials, construction methods and applications. Mater horizons. 2022;9(3):892-907. doi:10.1039/d1mh01431e Search in Google Scholar

Salehi-Reyhani A, Ces O, Elani Y. Artificial cell mimics as simplified models for the study of cell biology. Exp Biol Med. 2017;242(13):1309-1317. doi:10.1177/1535370217711441 Search in Google Scholar

Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980-10985. doi:10.1073/pnas.1106634108 Search in Google Scholar

Fang RH, Hu CMJ, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181-2188. doi:10.1021/nl500618u Search in Google Scholar

Calvo P, Gouritin B, Chacun H, et al. Long-circulating pegylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18(8):1157-1166. doi:10.1023/A:1010931127745 Search in Google Scholar

Monnard PA, Deamer DW. Membrane self-assembly processes: Steps toward the first cellular life. Anat Rec. 2002;268(3):196-207. doi:10.1002/ar.10154 Search in Google Scholar

Matsuno K. Proteinoid Microsphere. In: Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg; 2015:2033-2034. doi:10.1007/978-3-662-44185-5_1286 Search in Google Scholar

Trucillo P, Campardelli R, Reverchon E. Liposomes: From bangham to supercritical fluids. Processes. 2020;8(9):1022. doi:10.3390/pr8091022 Search in Google Scholar

Oberholzer T, Wick R, Luisi PL, Biebricher CK. Enzymatic RNA replication in self-reproducing vesicles: An approach to a minimal cell. Biochem Biophys Res Commun. 1995;207(1):250-257. doi:10.1006/bbrc.1995.1180 Search in Google Scholar

Lohse PA, Szostak JW. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996;381(6581). doi:10.1038/381442a0 Search in Google Scholar

Chidanguro T, Ghimire E, Liu CH, Simon YC. Polymersomes: Breaking the Glass Ceiling? Small. 2018;14(46):1802734. doi:10.1002/smll.201802734 Search in Google Scholar

Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science (80- ). 2010;329(5987):52-56. doi:10.1126/science.1190719 Search in Google Scholar

Sakai H, Kure T, Taguchi K, Azuma H. Research of storable and ready-to-use artificial red blood cells (hemoglobin vesicles) for emergency medicine and other clinical applications. Front Med Technol. 2022;4:1048951. doi:10.3389/fmedt.2022.1048951 Search in Google Scholar

Luisi PL, Walde P, Oberholzer T. Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci. 1999;4(1):33-39. doi:10.1016/S1359-0294(99)00012-6 Search in Google Scholar

Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science (80- ). 1995;270(5235):397-403. doi:10.1126/science.270.5235.397 Search in Google Scholar

Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem. 2023;6(1). doi:10.1038/s42004-023-00856-y Search in Google Scholar

Keber FC, Loiseau E, Sanchez T, et al. Topology and dynamics of active nematic vesicles. Science (80- ). 2014;345(6201):1135-1139. doi:10.1126/science.1254784 Search in Google Scholar

Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001;409(6818):387-390. doi:10.1038/35053176 Search in Google Scholar

Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. Biochim Biophys Acta - Biomembr. 2018;1860(10):2018-2031. doi:10.1016/j.bbamem.2018.05.002 Search in Google Scholar

Hindley JW, Law R V., Ces O. Membrane functionalization in artificial cell engineering. SN Appl Sci. 2020;2(4):1-10. doi:10.1007/s42452-020-2357-4 Search in Google Scholar

Reeves JP, Dowben RM. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol. 1969;73(1):49-60. doi:10.1002/jcp.1040730108 Search in Google Scholar

Elani Y. Construction of membrane-bound artificial cells using microfluidics: A new frontier in bottom-up synthetic biology. Biochem Soc Trans. 2016;44(3):723-730. doi:10.1042/BST20160052 Search in Google Scholar

Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discuss Chem Soc. 1986;81(0):303-311. doi:10.1039/DC9868100303 Search in Google Scholar

Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids. 2014;177:8-18. doi:10.1016/j.chemphyslip.2013.10.011 Search in Google Scholar

Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci. 2023;24(8):7231. doi:10.3390/ijms24087231 Search in Google Scholar

Takinoue M. DNA droplets for intelligent and dynamical artificial cells: From the viewpoint of computation and non-equilibrium systems. Interface Focus. 2023;13(5). doi:10.1098/rsfs.2023.0021 Search in Google Scholar

Chen G, Levin R, Landau S, et al. Implanted synthetic cells trigger tissue angiogenesis through de novo production of recombinant growth factors. Proc Natl Acad Sci U S A. 2022;119(38). doi:10.1073/pnas.2207525119 Search in Google Scholar

Toparlak D, Zasso J, Bridi S, et al. Artificial cells drive neural differentiation. Sci Adv. 2020;6(38):4920-4938. doi:10.1126/sciadv.abb4920 Search in Google Scholar

Zhang Y, Yu LC. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008;19(5):506-510. doi:10.1016/j.copbio.2008.07.005 Search in Google Scholar

Shi M, Shen K, Yang B, et al. An electroporation strategy to synthesize the membrane-coated nanoparticles for enhanced anti-inflammation therapy in bone infection. Theranostics. 2021;11(5):2349-2363. doi:10.7150/thno.48407 Search in Google Scholar

Zhao N, Chen Y, Chen G, Xiao Z. Artificial Cells Based on DNA Nanotechnology. ACS Appl Bio Mater. 2020;3(7):3928-3934. doi:10.1021/acsabm.0c00149 Search in Google Scholar

Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small. 2020;16(9). doi:10.1002/smll.201903940 Search in Google Scholar

Bhattacharya A, Devaraj NK. Tailoring the Shape and Size of Artificial Cells. ACS Nano. 2019;13(7):7396-7401. doi:10.1021/acsnano.9b05112 Search in Google Scholar

Emir Diltemiz S, Tavafoghi M, De Barros NR, et al. Use of artificial cells as drug carriers. Mater Chem Front. 2021;5(18):6672-6692. doi:10.1039/d1qm00717c Search in Google Scholar

Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521-535. doi:10.1038/nrd3499 Search in Google Scholar

Wang T, Ming T, Chang S. Micro / Nanocapsules for Cancer Targeted Delivery. Published online 2023. Search in Google Scholar

oyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol. 2021;39(9):927-939. doi:10.1016/j.tibtech.2020.12.002 Search in Google Scholar

Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci. 2023;24(9):7989. doi:10.3390/ijms24097989 Search in Google Scholar

Garamella J, Majumder S, Liu AP, Noireaux V. An Adaptive Synthetic Cell Based on Mechanosensing, Biosensing, and Inducible Gene Circuits. ACS Synth Biol. 2019;8(8):1913-1920. doi:10.1021/acssynbio.9b00204 Search in Google Scholar

Sümbelli Y, Mason AF, van Hest JCM. Toward Artificial Cell-Mediated Tissue Engineering: A New Perspective. Adv Biol. 2023;7(12):2300149. doi:10.1002/adbi.202300149 Search in Google Scholar

Zhang X, Guo WG, Cui H, et al. In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J Tissue Eng Regen Med. 2016;10(2):99-107. doi:10.1002/term.1705 Search in Google Scholar

Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, et al. Artificial Scaffolds in Cardiac Tissue Engineering. Life. 2022;12(8). doi:10.3390/life12081117 Search in Google Scholar

Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7(APR). doi:10.3389/fchem.2019.00167 Search in Google Scholar

Lim B, Yin Y, Ye H, Cui Z, Papachristodoulou A, Huang WE. Reprogramming Synthetic Cells for Targeted Cancer Therapy. ACS Synth Biol. 2022;11(3):1349-1360. doi:10.1021/acssynbio.1c00631 Search in Google Scholar

Zhao X, Tang D, Wu Y, Chen S, Wang C. An artificial cell system for biocompatible gene delivery in cancer therapy. Nanoscale. 2020;12(18):10189-10195. doi:10.1039/c9nr09131a Search in Google Scholar

Neal LR, Bailey SR, Wyatt MM, et al. The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther. 2017;2(1):68-79. Accessed January 14, 2024. /pmc/articles/PMC5560309/ Search in Google Scholar

Yildirim A, Akaiin H, Dundar M. Oncogenic genomic changes in cancer. In: Oncology: Genomics, Precision Medicine and Therapeutic Targets. Springer Nature; 2023:25-38. doi:10.1007/978-981-99-1529-3_2 Search in Google Scholar

Amisha, Malik P, Pathania M, Rathaur V. Overview of artificial intelligence in medicine. J Fam Med Prim Care. 2019;8(7):2328. doi:10.4103/jfmpc.jfmpc_440_19 Search in Google Scholar

Chen Z, Wang J, Sun W, et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol. 2018;14(1):86-93. doi:10.1038/nchembio.2511 Search in Google Scholar

von Baumgarten L, Stauss HJ, Lünemann JD. Synthetic Cell-Based Immunotherapies for Neurologic Diseases. Neurol Neuroimmunol neuroinflammation. 2023;10(5). doi:10.1212/NXI.0000000000200139 Search in Google Scholar

Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829-1839. doi:10.1016/S0140-6736(12)61768-1 Search in Google Scholar

Khan F, Singh K, Friedman MT. Artificial Blood: The History and Current Perspectives of Blood Substitutes. Discoveries. 2020;8(1):e104. doi:10.15190/d.2020.1 Search in Google Scholar

Liu J, Feng C, Zhang M, Song F, Liu H. Design and Fabrication of a Liver-on-a-chip Reconstructing Tissue-tissue Interfaces. Front Oncol. 2022;12. doi:10.3389/fonc.2022.959299 Search in Google Scholar

Jiménez-Díaz V, Pedroza-Rodríguez AM, Ramos-Monroy O, Castillo-Carvajal LC. Synthetic Biology: A New Era in Hydrocarbon Bioremediation. Processes. 2022;10(4):712. doi:10.3390/pr10040712 Search in Google Scholar

Atsumi S, Connor MR. Synthetic biology guides biofuel production. J Biomed Biotechnol. 2010;2010. doi:10.1155/2010/541698 Search in Google Scholar

Bedau MA, Parke EC, Tangen U, Hantsche-Tangen B. Social and ethical checkpoints for bottom-up synthetic biology, or protocells. Syst Synth Biol. 2009;3(1):65-75. doi:10.1007/S11693-009-9039-2/TABLES/2 Search in Google Scholar

Kolisis N, Kolisis F. Synthetic biology: Old and new dilemmas—the case of artificial life. BioTech. 2021;10(3). doi:10.3390/BIOTECH10030016 Search in Google Scholar

Medori MC, Bonetti G, Donato K, et al. Bioetics Issues of Artificial Placenta and Artificial Womb Technology. Clin Ter. 2023;174(6):243-248. doi:10.7417/CT.2023.2494 Search in Google Scholar

Maltese PE, Poplavskaia E, Malyutkina I, et al. Genetic tests for low- and middle-income countries: A literature review. Genet Mol Res. 2017;16(1):16019466. doi:10.4238/gmr16019466 Search in Google Scholar

Dündar M, Karabulut SY. Türkiye’de nadir hastaliklar ve yetim İlaçlar; medikal ve sosyal problemler. Erciyes Tip Derg. 2010;32(3):195-200. Accessed January 15, 2024. http://search/yayin/detay/109446 Search in Google Scholar

Kiani AK, Pheby D, Henehan G, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg. 2022;63(2):E255-E266. doi:10.15167/2421-4248/jpmh2022.63.2S3.2768 Search in Google Scholar

Gartland KMA, Bruschi F, Dundar M, Gahan PB, Viola Magni MP, Akbarova Y. Progress towards the “Golden Age” of biotechnology. Curr Opin Biotechnol. 2013;24(SUPPL.1):S6-S13. doi:10.1016/j.copbio.2013.05.011 Search in Google Scholar

Martin DK, Vicente O, Beccari T, et al. A brief overview of global biotechnology. Biotechnol Biotechnol Equip. 2021;35(1):354-363. doi:10.1080/13102818.2021.1878933 Search in Google Scholar

Jain KK. Synthetic biology and personalized medicine. Med Princ Pract. 2013;22(3):209-219. doi:10.1159/000341794 Search in Google Scholar

Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. J Am Chem Soc. 2019;141(28):11103-11114. doi:10.1021/jacs.9b03300 Search in Google Scholar

Cesaretti M, Zarzavajian Le Bian A, Moccia S, Iannelli A, Schiavo L, Diaspro A. From deceased to bioengineered graft: New frontiers in liver transplantation. Transplant Rev. 2019;33(2):72-76. doi:10.1016/j.trre.2018.12.002 Search in Google Scholar

Han F, Wang J, Ding L, et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. doi:10.3389/fbioe.2020.00083 Search in Google Scholar

Tror S, Jeon SM, Nguyen HT, Huh E, Shin K. A Self-Regenerating Artificial Cell, that is One Step Closer to Living Cells: Challenges and Perspectives. Small Methods. Published online 2023. doi:10.1002/smtd.202300182 Search in Google Scholar

Dundar M, Prakash S, Lal R, Martin DK. Future Biotechnology. Eurobiotech J. 2019;3(2):53-56. doi:10.2478/ebtj-2019-0006 Search in Google Scholar

Cho E, Lu Y. Compartmentalizing cell-free systems: Toward creating life-like artificial cells and beyond. ACS Synth Biol. 2020;9(11):2881-2901. doi:10.1021/acssynbio.0c00433 Search in Google Scholar

Deeni Y, Beccari T, Dundar M, et al. Novel technologies and their applications in biotechnology and the life sciences. J Biotechnol. 2014;185(6):S12. doi:10.1016/j.jbiotec.2014.07.043 Search in Google Scholar

Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A. 2015;112(47):14429-14435. doi:10.1073/pnas.1508521112 Search in Google Scholar

eISSN:
2564-615X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other