Acceso abierto

Silk Fibroin Hybrids for Biological Scaffolds with Adhesive Surface and Adaptability to the Target Tissue Change


Cite

1. Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, Orlando G. Regenerative medicine, organ bioengineering and transplantation. British Journal of Surgery 2020; 107(7): 793–800.10.1002/bjs.1168632463143 Search in Google Scholar

2. Atala A. Engineering organs. Current Opinion in Biotechnology 2009; 20(5): 575–92.10.1016/j.copbio.2009.10.00319896823 Search in Google Scholar

3. Hamilton NJ, Kanani M, Roebuck DJ, et al. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. American Journal of transplantation 2015; 15(10): 2750–57.Zopf DA, Hollister SJ, Nelson ME. Bioresorbable airway splint created with a three-dimensional printer. New England Journal of Medicine 2013; 368(21):2043–45.10.1056/NEJMc120631923697530 Search in Google Scholar

4. Zopf DA, Hollister SJ, Nelson ME. Bioresorbable airway splint created with a three-dimensional printer. New England Journal of Medicine 2013; 368(21):2043–45.10.1056/NEJMc1206319 Search in Google Scholar

5. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 2011; 377(9772):1175–82.10.1016/S0140-6736(10)62354-9400588721388673 Search in Google Scholar

6. Shafiee A, Atala A. Tissue Engineering: Toward a New Era of Medicine. Annual Review of Medicine 2017; 68: 29-40.10.1146/annurev-med-102715-09233127732788 Search in Google Scholar

7. Terzic A, Pfenning MA, Gores GJ, Harper CM Jr. Regenerative Medicine Build-Out. Stem Cells Translational Medicine 2015; 4(12): 1373-79.10.5966/sctm.2015-0275467551326537392 Search in Google Scholar

8. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology 2014; 32: 773–85.10.1038/nbt.295825093879 Search in Google Scholar

9. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today 2011; 14(3): 88-90.10.1016/S1369-7021(11)70058-X Search in Google Scholar

10. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15(5): 378-86.10.1016/j.semcancer.2005.05.00415975825 Search in Google Scholar

11. Friess W. Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 1998; 45(2):113-36.10.1016/S0939-6411(98)00017-4 Search in Google Scholar

12. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science 2010; 123(24): 4195-200.10.1242/jcs.023820299561221123617 Search in Google Scholar

13. Chiesa I, De Maria C, Ceccarini MR, Mussolin L, Coletta R, Morabito A, Tonin R, Calamai M, Morrone A, Beccari T, Valentini L. 3D Printing Silk-Based Bioresorbable Piezoelectric Self-Adhesive Holey Structures for In Vivo Monitoring on Soft Tissues. ACS Appl Mater Interf 2022; 14: 19253-64.10.1021/acsami.2c04078907383535438960 Search in Google Scholar

14. Von Recum AF, La Berge M. Educational goals for biomaterials science and engineering: perspective view. J Appl Biomater 1995; 6: 137–44.10.1002/jab.7700602097640441 Search in Google Scholar

15. Talbot EL, Berson A, Brown PS, Bain CD. Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Physical Review E 2012; 85: 061604.10.1103/PhysRevE.85.06160423005106 Search in Google Scholar

16. Hopp B, Smausz T, Szabó G, Kolozsvari L, Nogradi A, Kafetzopoulos D, Fotakis C. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer. Optical Engineering 2012; 51(1): 014302.10.1117/1.OE.51.1.014302 Search in Google Scholar

17. Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding strategies for tissue engineering and regenerative medicine applications materials 2019: 2-4.10.3390/ma12111824660096831195642 Search in Google Scholar

18. Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. British Journal of Dermatology 2007; 156: 1149-55.10.1111/j.1365-2133.2007.07914.x17535219 Search in Google Scholar

19. Costa-Almeida R, Soares R, Granja PL. Fibroblasts as maestros orchestrating tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine 2018; 12: 240-51.10.1002/term.240528109062 Search in Google Scholar

20. Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22: 7703.10.3390/ijms22147703830666934299322 Search in Google Scholar

21. Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacologica Sinica 2013; 34(1): 78-90.10.1038/aps.2012.107408649223064725 Search in Google Scholar

22. Lim D, Flames N, Collado L, Herrera DG. Investigating the use of primary adult subventricular zone neural precursor cells for neuronal replacement therapies. Brain Research Bulletin 2002; 57(6): 759-64.10.1016/S0361-9230(01)00768-712031272 Search in Google Scholar

23. Oliveira J., Pina S., Reis R., San Roman J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology 2018; 1058.10.1007/978-3-319-76735-2 Search in Google Scholar

24. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009; 10:1514–1524.10.3390/ijms10041514268063019468322 Search in Google Scholar

25. Valentini L, Ceccarini MR, Verdejo R, Tondi G, Beccari T. Stretchable, Bio-compatible, antioxidant and self-powering adhesives from soluble silk fibroin and vegetal polyphenols exfoliated graphite. Nanomaterials 2021; 11(9): 2352.10.3390/nano11092352847227934578666 Search in Google Scholar

26. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Richmond HLJ, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-16.10.1016/S0142-9612(02)00353-8 Search in Google Scholar

27. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Del Rev 2013; 65(4): 457-70.10.1016/j.addr.2012.09.04323137786 Search in Google Scholar

28. Bai H., Chun L., Gaoquan S. Functional composite materials based on chemically converted graphene. Advanced Materials 2011; 23: 1089-115.10.1002/adma.20100375321360763 Search in Google Scholar

29. Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Interfacing live cells with nanocarbon substrates. Langmuir 2010; 26(4): 2244–2247.10.1021/la904874320099791 Search in Google Scholar

30. Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int. J. Nanomed. 2019; 14: 5753–578310.2147/IJN.S192779666251631413573 Search in Google Scholar

31. A. Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 2020; 580: 119226.10.1016/j.ijpharm.2020.11922632179151 Search in Google Scholar

32. Chiesa I, De Maria C, Tonin R, Ripanti F, Ceccarini MR, Salvatori C, Mussolin L, Paciaroni A, Petrillo C, Cesprini E, Feo F, Calamai M, Morrone A, Morabito A, Beccari T, Valentini L. Biocompatible and printable ionotronic sensing materials based on silk fibroin and soluble plant-derived polyphenols. ACS Omega 2022; 7: 43729-37.10.1021/acsomega.2c04729973045636506141 Search in Google Scholar

eISSN:
2564-615X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other