Acceso abierto

Oxidative Stress and Thrombophilia: Focus on Pregnancy-Related Pathophysiological Mechanisms


Cite

Hunt BJ. The current place of anticoagulation in pregnancy. Br J Haematol. 2010;149(6):681-693. Search in Google Scholar

Rodger MA, Hague WM, Kingdom J, et al. Antepartum dalteparin versus no antepartum dalteparin for the prevention of pregnancy complications in pregnant women with thrombophilia (TIPPS): a multinational open-label randomised trial. Lancet. 2014;384(9955):1673-1683. Search in Google Scholar

Bates SM, Middeldorp S, Rodger M, James AH, Greer I. Guidance for the treatment and prevention of obstetricassociated venous thromboembolism. J Thromb Thrombolysis. 2016;41(1):92-128. Search in Google Scholar

Redondo S, Santos-Gallego CG, Ganado P, et al. The role of reactive oxygen species in the pathogenesis of pulmonary thromboembolism. Physiology (Bethesda). 2017;32(1):15-27. Search in Google Scholar

Dautaj A, Krasi G, Bushati V, Precone V, Gheza M, Fioretti F, Sartori M, Costantini A, Benedetti S, Bertelli M. Hereditary thrombophilia. Acta Biomed. 2019 Sep 30;90(10-S):44-46. doi: 10.23750/abm.v90i10-S.8758. PMID: 31577252; PMCID: PMC7233636 Search in Google Scholar

Kreidy R, Irani-Hakime N. Is thrombophilia a major risk factor for deep vein thrombosis of the lower extremities among Lebanese patients? Vasc Health Risk Manag. 2009;5:627-33. doi: 10.2147/vhrm.s6184. Epub 2009 Aug 6. PMID: 19688103; PMCID: PMC2725795. Search in Google Scholar

Wahed, A., & Dasgupta, A. (2015). Thrombophilias and Their Detection. Hematology and Coagulation, 263– 275. doi:10.1016/b978-0-12-800241-4.00016-4 Search in Google Scholar

Tranquilli AR, Giannubilo SR, Dell’Uomo B, Grandone E. Adverse pregnancy outcomes are associated with multiple maternal thrombophilic factors. Eur J Obst Gyn Repr Biol 2004; 117(2): 144‒7. Search in Google Scholar

Brenner B, Aharon A. Thrombophilia and adverse pregnancy outcome. Clin Perinatol 2007; 34(4): 527‒41, v. Search in Google Scholar

Moll S. Thrombophilia: clinical-practical aspects. J Thromb Thrombolysis. 2015 Apr;39(3):367-78. doi: 10.1007/s11239-015-1197-3. PMID: 25724822. Search in Google Scholar

Raju N, Bates SM. Preventing thrombophilia-related complications of pregnancy. Expert Rev Hematol. 2009 Apr;2(2):183-96. doi: 10.1586/ehm.09.8. PMID: 21083451. Search in Google Scholar

Dal Y, Nazıroğlu M, Özkaya MO. Low molecular weight heparin treatment reduced apoptosis and oxidative cytotoxicity in the thrombocytes of patients with recurrent pregnancy loss and thrombophilia: Involvements of TRPM2 and TRPV1 channels. J Obstet Gynaecol Res. 2023 May;49(5):1355-1365. doi: 10.1111/jog.15612. Epub 2023 Feb 18. PMID: 36807656. Search in Google Scholar

Stevens SM, Woller SC, Bauer KA, Kasthuri R, Cushman M, Streiff M, Lim W, Douketis JD. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis. 2016 Jan;41(1):154-64. doi: 10.1007/s11239-015-1316-1. PMID: 26780744; PMCID: PMC4715840. Search in Google Scholar

Vrotniakaite-Bajerciene, K.; Tritschler, T.; Jalowiec, K.A.; Broughton, H.; Brodard, J.; Porret, N.A.; Haynes, A.; Rovo, A.; Kremer Hovinga, J.A.; Aujesky, D.; et al. Thrombophilia Impact on Treatment Decisions, Subsequent Venous or Arterial Thrombosis and Pregnancy-Related Morbidity: A Retrospective Single-Center Cohort Study. J. Clin. Med. 2022, 11, 4188. https://doi.org/10.3390/jcm11144188 Search in Google Scholar

Connors JM. Thrombophilia Testing and Venous Thrombosis. N Engl J Med. 2017 Sep 21;377(12):1177-1187. doi: 10.1056/NEJMra1700365. PMID: 28930509. Search in Google Scholar

Campello E, Spiezia L, Adamo A, Simioni P. Thrombophilia, risk factors and prevention. Expert Rev Hematol. 2019 Mar;12(3):147-158. doi: 10.1080/17474086.2019.1583555. Epub 2019 Feb 26. PMID: 30773075. Search in Google Scholar

Kujovich JL. Factor V Leiden thrombophilia. Genet Med. 2011 Jan;13(1):1-16. doi: 10.1097/GIM.0b013e3181faa0f2. PMID: 21116184. Search in Google Scholar

Armstrong EM, Bellone JM, Hornsby LB, Treadway S, Phillippe HM. Acquired Thrombophilia. J Pharm Pract. 2014; Jun;27(3):234-42. doi: 10.1177/0897190014530 424. Epub 2014 Apr 17. PMID: 24742931. Search in Google Scholar

Greaves M. Acquired thrombophilia. Vasc Med. 2004 May;9(3):215-8. doi: 10.1191/1358863x04vm533xx. PMID: 15675187. Search in Google Scholar

Simcox LE, Ormesher L, Tower C, Greer IA. Thrombophilia and Pregnancy Complications. Int J Mol Sci. 2015 Nov 30;16(12):28418-28. doi: 10.3390/ijms161226104. PMID: 26633369; PMCID: PMC4691051. Search in Google Scholar

Middeldorp S, Naue C, Köhler C. Thrombophilia, Thrombosis and Thromboprophylaxis in Pregnancy: For What and in Whom? Hamostaseologie. 2022 Feb;42(1):54-64. doi: 10.1055/a-1717-7663. Epub 2022 Feb 23. PMID: 35196731. Search in Google Scholar

Eldor A. Thrombophilia and its treatment in pregnancy. J Thromb Thrombolysis. 2001 Sep;12(1):23-30. doi: 10.1023/a:1012730325902. PMID: 11711685. Search in Google Scholar

Maiello M, Torella M, Caserta L, Caserta R, Sessa M, Tagliaferri A, Bernacchi M, Napolitano M, Nappo C, De Lucia D, Panariello S. Trombofilia in gravidanza: evidenze clinico-sperimentali di uno stato trombofilico [Hypercoagulability during pregnancy: evidences for a thrombophilic state]. Minerva Ginecol. 2006 Oct;58(5):417-22. Italian. PMID: 17006429. Search in Google Scholar

Brenner B. Haemostatic changes in pregnancy. Thromb Res. 2004;114(5-6):409-14. doi: 10.1016/j.thromres. 2004.08.004. PMID: 15507271. Search in Google Scholar

Takashima M, Yamasaki M, Ohashi M, Morikawa H, Mochizuki M. [A trial of low-dose aspirin therapy in high-risk pregnancy]. Nihon Sanka Fujinka Gakkai Zasshi. 1992 Jul;44(7):845-52. Japanese. PMID: 1500806. Search in Google Scholar

Oruç S, Saruç M, Koyuncu FM, Ozdemir E. Changes in the plasma activities of protein C and protein S during pregnancy. Aust N Z J Obstet Gynaecol. 2000 Nov;40(4):448-50. doi: 10.1111/j.1479-828x.2000.tb01179.x. PMID: 11194434. Search in Google Scholar

Gore M, Eldon S, Trofatter KF, Soong SJ, Pizzo SV. Pregnancy-induced changes in the fibrinolytic balance: evidence for defective release of tissue plasminogen activator and increased levels of the fast-acting tissue plasminogen activator inhibitor. Am J Obstet Gynecol. 1987 Mar;156(3):674-80. doi: 10.1016/0002-9378(87)90076-7. PMID: 3493696. Search in Google Scholar

Gris JC, Guillotin F, Chéa M, Bourguignon C, Bouvier S. The Risk of Thrombosis Around Pregnancy: Where Do We Stand? Front Cardiovasc Med. 2022 May 26;9:901869. doi: 10.3389/fcvm.2022.901869. PMID: 35722088; PMCID: PMC9205638. Search in Google Scholar

Tripodi A, Mannucci PM. Laboratory investigation of thrombophilia. Clin Chem. 2001 Sep;47(9):1597-606. PMID: 11514392. Search in Google Scholar

Reese JA, Peck JD, Deschamps DR, McIntosh JJ, Knudtson EJ, Terrell DR, Vesely SK, George JN. Platelet Counts during Pregnancy. N Engl J Med. 2018 Jul 5;379(1):32-43. doi: 10.1056/NEJMoa1802897. PMID: 29972751; PMCID: PMC6049077. Search in Google Scholar

Ciobanu AM, Colibaba S, Cimpoca B, Peltecu G, Panaitescu AM. Thrombocytopenia in Pregnancy. Maedica (Bucur). 2016 Mar;11(1):55-60. PMID: 28465752; PMCID: PMC5394486. Search in Google Scholar

Said JM, Ignjatovic V, Monagle PT, Walker SP, Higgins JR, Brennecke SP. Altered reference ranges for protein C and protein S during early pregnancy: Implications for the diagnosis of protein C and protein S deficiency during pregnancy. Thromb Haemost. 2010 May;103(5):984-8. doi: 10.1160/TH09-07-0476. Epub 2010 Feb 19. PMID: 20174758. Search in Google Scholar

Hale SA, Sobel B, Benvenuto A, Schonberg A, Badger GJ, Bernstein IM. Coagulation and Fibrinolytic System Protein Profiles in Women with Normal Pregnancies and Pregnancies Complicated by Hypertension. Pregnancy Hypertens. 2012 Apr 1;2(2):152-157. doi: 10.1016/j.preghy.2012.01.004. PMID: 22712057; PMCID: PMC3375860. Search in Google Scholar

O’Shaughnessy F, O’Reilly D, Ní Áinle F. Current opinion and emerging trends on the treatment, diagnosis, and prevention of pregnancy-associated venous thromboembolic disease: a review. Transl Res. 2020 Nov;225:20-32. doi: 10.1016/j.trsl.2020.06.004. Epub 2020 Jun 15. PMID: 32554071. Search in Google Scholar

Bremme KA. Haemostatic changes in pregnancy. Best Pract Res Clin Haematol. 2003 Jun;16(2):153-68. doi: 10.1016/s1521-6926(03)00021-5. PMID: 12763484. Search in Google Scholar

Bagot CN, Leishman E, Onyiaodike CC, Jordan F, Freeman DJ. Normal pregnancy is associated with an increase in thrombin generation from the very early stages of the first trimester. Thromb Res. 2017 Sep;157:49-54. doi: 10.1016/j.thromres.2017.06.027. Epub 2017 Jun 29. PMID: 28692840. Search in Google Scholar

Gong JM, Shen Y, He YX. Reference Intervals of Routine Coagulation Assays During the Pregnancy and Puerperium Period. J Clin Lab Anal. 2016 Nov;30(6):912-917. doi: 10.1002/jcla.21956. Epub 2016 Apr 7. PMID: 27061783; PMCID: PMC6806709. Search in Google Scholar

Samfireag M, Potre C, Potre O, Tudor R, Hoinoiu T, Anghel A. Approach to Thrombophilia in Pregnancy-A Narrative Review. Medicina (Kaunas). 2022 May 23;58(5):692. doi: 10.3390/medicina58050692. PMID: 35630108; PMCID: PMC9145888. Search in Google Scholar

Szecsi P.B., Jørgensen M., Klajnbard A., Andersen M.R., Colov N.P., Stender S. Haemostatic reference intervals in pregnancy. Thromb. Haemost. 2010;103:718–727. doi: 10.1160/TH09-10-0704. Search in Google Scholar

Dobbenga-Rhodes Y. Shedding Light on Inherited Thrombophilias: The Impact on Pregnancy. J. Perinat. Neonatal Nurs. 2016;30:36–44. doi: 10.1097/JPN.00000 00000000146. Search in Google Scholar

Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A, Haque S, Reshi MS. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells. 2022 Feb 5;11(3):552. doi: 10.3390/cells11030552. PMID: 35159361; PMCID: PMC8833991. Search in Google Scholar

Fruhwirth GO, Hermetter A. Mediation of apoptosis by oxidized phospholipids. Subcell Biochem. 2008;49:351-67. doi: 10.1007/978-1-4020-8831-5_13. PMID: 18751 918. Search in Google Scholar

Auten RL, Whorton MH, Nicholas Mason S. Blocking neutrophil influx reduces DNA damage in hyperoxia-exposed newborn rat lung. Am J Respir Cell Mol Biol. 2002 Apr;26(4):391-7. doi: 10.1165/ajrcmb.26.4.4708. PMID: 11919074. Search in Google Scholar

Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020 Jan 7;18:207-219. doi: 10.1016/j.csbj.2019.12.013. PMID: 31993111; PMCID: PMC6974700. Search in Google Scholar

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613. Epub 2012 Jan 13. PMID: 23268465; PMCID: PMC3488923. Search in Google Scholar

Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017 May;21(5):1024-1032. doi: 10.1111/jcmm.13038. Epub 2016 Dec 13. PMID: 27957792; PMCID: PMC5387169. Search in Google Scholar

White RE, Gerrity R, Barman SA, Han G. Estrogen and oxidative stress: A novel mechanism that may increase the risk for cardiovascular disease in women. Steroids. 2010 Nov;75(11):788-93. doi: 10.1016/j.steroids. 2009.12.007. Epub 2010 Jan 7. PMID: 20060403; PMCID: PMC2891201. Search in Google Scholar

Stepniak J, Karbownik-Lewinska M. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med. 2016;62(1):17-21. doi: 10.3109/19396368.2015.1101510. Epub 2015 Dec 17. PMID: 26677908. Search in Google Scholar

Alonso-Alvarez C, Bertrand S, Faivre B, Chastel O, Sorci G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc Biol Sci. 2007 Mar 22;274(1611):819-25. doi: 10.1098/rspb.2006.3764. PMID: 17251089; PMCID: PMC2093982. Search in Google Scholar

Joksimović J, Selaković D, Jakovljević V, Mihailović V, Katanić J, Boroja T, Rosić G. Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration. Mol Cell Biochem. 2017 Sep;433(1-2):41-50. doi: 10.1007/s11010-017-3014-0. Epub 2017 Mar 24. PMID: 28342008. Search in Google Scholar

Bąk A., Roszkowski K. Oxidative stress in pregnant women. Archives of Perinatal Medicine . 2013;19(3):155–155. Search in Google Scholar

Duhig K., Chappell L., Shennan A. Oxidative stress in pregnancy and reproduction. Obstetric Medicine . 2016;9(3):113–116. doi: 10.1177/1753495X16648495 Search in Google Scholar

Toescu V., Nuttall S. L., Martin U., Kendall M. J., Dunne F. Oxidative stress and normal pregnancy. Clinical Endocrinology . 2002;57(5):609–613. doi: 10.1046/j.1365-2265.2002.01638.x. Search in Google Scholar

Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm. 2021; Sep 27;2021:9962860. doi: 10.1155/2021/996 2860. PMID: 34616234; PMCID: PMC8490076. Search in Google Scholar

Morales E, García-Serna AM, Larqué E, Sánchez-Campillo M, Serrano-Munera A, Martinez-Graciá C, Santaella-Pascual M, Suárez-Martínez C, Vioque J, Noguera-Velasco JA, Avilés-Plaza FV, Martínez-Villanueva M, Ballesteros-Meseguer C, Galdo-Castiñeira L, García-Marcos L. Dietary Patterns in Pregnancy and Biomarkers of Oxidative Stress in Mothers and Offspring: The NELA Birth Cohort. Front Nutr. 2022 Apr 12;9:869357. doi: 10.3389/fnut.2022.869357. PMID: 35495932; PMCID: PMC9039535. Search in Google Scholar

Lyu Y, Wang G, Sun Z, Cui X, Xiu Q, Wu L. The association of maternal fat-soluble antioxidants in early pregnancy with gestational diabetes mellitus: a prospective cohort study. Nutr Diabetes. 2022 Dec 9;12(1):49. doi: 10.1038/s41387-022-00227-x. PMID: 36494332; PMCID: PMC9734187. Search in Google Scholar

Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. Oxid Med Cell Longev. 2022 Nov 16;2022:8418820. doi: 10.1155/2022/8418820. PMID: 36439687; PMCID: PMC9683973. Search in Google Scholar

Wang Q, Zennadi R. Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci. 2020 Jun 15;21(12):4259. doi: 10.3390/ijms21124259. PMID: 32549393; PMCID: PMC7352981. Search in Google Scholar

Vincenzo, S.D.; Ferrante, G.; Ferraro, M.; Cascio, C.; Malizia, V.; Licari, A.; La Grutta, S.; Pace, E. Oxidative Stress, Environmental Pollution, and Lifestyle as Determinants of Asthma in Children. Biology 2023, 12, 133. https://doi.org/10.3390/biology12010133 Search in Google Scholar

Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci. 2020 Mar 11;21(6):1918. doi: 10.3390/ijms21061918. PMID: 32168908; PMCID: PMC7139897. Search in Google Scholar

Rosenfeld MA, Bychkova AV, Shchegolikhin AN, Leonova VB, Kostanova EA, Biryukova MI, Sultimova NB, Konstantinova ML. Fibrin self-assembly is adapted to oxidation. Free Radic Biol Med. 2016 Jun;95:55-64. doi: 10.1016/j.freeradbiomed.2016.03.005. Epub 2016 Mar 9. PMID: 26969792 Search in Google Scholar

De Cristofaro R, Landolfi R. Oxidation of human alphathrombin by the myeloperoxidase-H2O2-chloride system: structural and functional effects. Thromb Haemost. 2000 Feb;83(2):253-61. PMID: 10739383. Search in Google Scholar

Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, Jia Y, Dickinson BC, Zhong J, Ye K, Chang CJ, Ho YS, Zhou J, Luo HR. Reactive oxygen speciesinduced actin glutathionylation controls actin dynamics in neutrophils. Immunity. 2012 Dec 14;37(6):1037-49. doi: 10.1016/j.immuni.2012.08.017. Epub 2012 Nov 15. PMID: 23159440; PMCID: PMC3525814. Search in Google Scholar

Maruyama T, Hieda M, Mawatari S, Fujino T. Rheological Abnormalities in Human Erythrocytes Subjected to Oxidative Inflammation. Front Physiol. 2022 Feb 23;13:837926. doi: 10.3389/fphys.2022.837926. PMID: 35283782; PMCID: PMC8905344. Search in Google Scholar

Singh M., Shin S. (2009). Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J. Exp. Biol. 47 7–15. Search in Google Scholar

Gillespie AH, Doctor A. Red Blood Cell Contribution to Hemostasis. Front Pediatr. 2021 Apr 1;9:629824. doi: 10.3389/fped.2021.629824. PMID: 33869111; PMCID: PMC8047051. Search in Google Scholar

Kim Y, Goodman MD, Jung AD, Abplanalp WA, Schuster RM, Caldwell CC, Lentsch AB, Pritts TA. Microparticles from aged packed red blood cell units stimulate pulmonary microthrombus formation via P-selectin. Thromb Res. 2020 Jan;185:160-166. doi: 10.1016/j.thromres.2019.11.028. Epub 2019 Nov 26. PMID: 31821908; PMCID: PMC7061313. Search in Google Scholar

Wang YP, Walsh SW, Guo JD, Zhang JY. Maternal levels of prostacyclin, thromboxane, vitamin E, and lipid peroxides throughout normal pregnancy. Am J Obstet Gynecol 1991; 165(6 Pt 1): 1690‒4. Search in Google Scholar

Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: A review of the literature. Reprod Toxicol 1999; 13(5): 347‒52. Search in Google Scholar

Gupta S, Agarwal A, Banerjee J, Alvarez JG. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet Gynecol Surv 2007; 62(5): 335‒47; quiz 353‒4. Search in Google Scholar

Argüelles S, Machado MJ, Ayala A, Machado A, Hervías B. Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radic Res 2006; 40(6): 565‒70 Search in Google Scholar

Laude I, Rongières-Bertrand C, Boyer-Neumann C, Wolf M, Mairovitz V, Hugel B, et al. Circulating procoagulant microparticles in women with unexplained pregnancy loss: A new insight. Thromb Haemost 2001; 85(1): 18‒21. Search in Google Scholar

Bogdanović Pristov J, Spasojevic I, Mikovic Z, Mandic V, Cerovic N, Spasic M. Antioxidative defense enzymes in placenta protect placenta and fetus in inherited thrombophilia from hydrogen peroxide. Oxid Med Cell Longev 2009; 2(1): 14‒8. Search in Google Scholar

Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, Yazbi AE, Pintus G, Eid AH. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front Biosci (Landmark Ed). 2022 Mar 18;27(3):105. doi: 10.31083/j.fbl2703105. PMID: 35345337. Search in Google Scholar

Loscalzo J. Oxidative stress in endothelial cell dysfunction and thrombosis. Pathophysiol Haemost Thromb. 2002 Sep-Dec;32(5-6):359-60. doi: 10.1159/000073 600. PMID: 13679676. Search in Google Scholar

Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019 Feb 28;133(9):906-918. doi: 10.1182/blood-2018-11-882993. Epub 2019 Jan 14. PMID: 30642917. Search in Google Scholar

Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev. 2012 Jul;64(3):540-82. doi: 10.1124/pr.111.00 4770. Epub 2012 Jun 7. PMID: 22679221; PMCID: PMC3400831. Search in Google Scholar

Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res. 2021 Sep;137:104188. doi: 10.1016/j.mvr.2021.104188. Epub 2021 May 20. PMID: 34022205; PMCID: PMC8135191. Search in Google Scholar

Hamilos M, Petousis S, Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc Diagn Ther. 2018 Oct;8(5):568-580. doi: 10.21037/cdt.2018.07.01. PMID: 30498682; PMCID: PMC6232347. Search in Google Scholar

Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev. 2018 Jul;70(3):526-548. doi: 10.1124/pr.117.014530. PMID: 29925522; PMCID: PMC6013590. Search in Google Scholar

Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017 Mar 14;38(11):785-791. doi: 10.1093/eurheartj/ehw550. PMID: 28039338. Search in Google Scholar

Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med. 2002 May;30(5 Suppl):S294-301. doi: 10.1097/00003246-200205001-00020. PMID: 12004251 Search in Google Scholar

Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol. 2001 May;21(5):731-8. doi: 10.1161/01.atv.21.5.731. PMID: 11348867. Search in Google Scholar

Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus. 2011 Apr;9(2):120-38. doi: 10.2450/2010.0066-10. Epub 2010 Oct 25. PMID: 21084000; PMCID: PMC3096855. Search in Google Scholar

Kohli S, Shahzad K, Jouppila A, Holthöfer H, Isermann B, Lassila R. Thrombosis and Inflammation-A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Front Cardiovasc Med. 2022 Mar 31;9:866751. doi: 10.3389/fcvm.2022.866751. PMID: 35433860; PMCID: PMC9008778 Search in Google Scholar

Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines. 2021 Jul 6;9(7):781. doi: 10.3390/biomedicines9070781. PMID: 34356845; PMCID: PMC8301477. Search in Google Scholar

Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005 Nov;131(4):417-30. doi: 10.1111/j.1365-2141.2005.05753.x. PMID: 1628 1932 Search in Google Scholar

Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021 Sep;18(9):666-682. doi: 10.1038/s41569-021-00552-1. Epub 2021 May 6. PMID: 33958774; PMCID: PMC8100938. Search in Google Scholar

Huang X, Liu B, Wei Y, Beyea R, Yan H, Olson ST. Lipid oxidation inactivates the anticoagulant function of protein Z-dependent protease inhibitor (ZPI). J Biol Chem. 2017 Sep 1;292(35):14625-14635. doi: 10.1074/jbc.M117.793901. Epub 2017 Jul 17. PMID: 28717005; PMCID: PMC5582853. Search in Google Scholar

van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012 Jan;34(1):93-106. doi: 10.1007/s00281-011-0285-5. Epub 2011 Aug 4. PMID: 21845431; PMCID: PMC3233666. Search in Google Scholar

Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC. The Role of Oxidative Stress, Adhesion Molecules and Antioxidants in Preeclampsia. Curr Hypertens Rev. 2019;15(2):105-112. doi: 10.2174/1573402115 666190119163942. PMID: 30663572. Search in Google Scholar

Siudut J, Natorska J, Wypasek E, Wiewiórka Ł, Ostrowska-Kaim E, Wiśniowska-Śmiałek S, Plens K, Legutko J, Undas A. Impaired Fibrinolysis in Patients with Isolated Aortic Stenosis is Associated with Enhanced Oxidative Stress. J Clin Med. 2020 Jun 25;9(6):2002. doi: 10.3390/jcm9062002. PMID: 32630544; PMCID: PMC7355626. Search in Google Scholar

Cheung PY, Salas E, Schulz R, Radomski MW. Nitric oxide and platelet function: implications for neonatology. Semin Perinatol. 1997 Oct;21(5):409-17. doi: 10.1016/s0146-0005(97)80006-7. PMID: 9352613. Search in Google Scholar

Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011;2011:841749. doi: 10.1155/2011/841749. Epub 2011 Sep 13. PMID: 21918714; PMCID: PMC3171895. Search in Google Scholar

Olas B. The Antioxidant, Anti-Platelet and Anti-Coagulant Properties of Phenolic Compounds, Associated with Modulation of Hemostasis and Cardiovascular Disease, and Their Possible Effect on COVID-19. Nutrients. 2022 Mar 26;14(7):1390. doi: 10.3390/nu14071390. PMID: 35406002; PMCID: PMC9003312. Search in Google Scholar

Türker FS, Malbora A, Erisir M. Oxidative status and antioxidant enzyme levels in deep venous thrombosis patients. Am J Cardiovasc Dis. 2021 Feb 20;11(1):176-183. PMID: 33815933; PMCID: PMC8012287. Search in Google Scholar

Sobotková A, Másová-Chrastinová L, Suttnar J, Stikarová J, Májek P, Reicheltová Z, Kotlín R, Weisel JW, Malý M, Dyr JE. Antioxidants change platelet responses to various stimulating events. Free Radic Biol Med. 2009 Dec 15;47(12):1707-14. doi: 10.1016/j.freeradbiomed. 2009.09.015. Epub 2009 Sep 17. PMID: 19766712; PMCID: PMC2854508. Search in Google Scholar

Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019 Nov 11;2019:9613090. doi: 10.1155/2019/9613090. PMID: 31827713; PMCID: PMC6885225. Search in Google Scholar

Carillon J, Rouanet JM, Cristol JP, Brion R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res. 2013 Nov;30(11):2718-28. doi: 10.1007/s11095-013-1113-5. Epub 2013 Jun 21. PMID: 23793992. Search in Google Scholar

Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837. Epub 2012 Feb 28. PMID: 22500213; PMCID: PMC3303626. Search in Google Scholar

Glassman I, Le N, Mirhosseini M, Alcantara CA, Asif A, Goulding A, Muneer S, Singh M, Robison J, Guilford F, Venketaraman V. The Role of Glutathione in Prevention of COVID-19 Immunothrombosis: A Review. Front Biosci (Landmark Ed). 2023 Mar 20;28(3):59. doi: 10.31083/j.fbl2803059. PMID: 37005767; PMCID: PMC10406467. Search in Google Scholar

eISSN:
2956-2090
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other