Acceso abierto

Prediction of the Influence of Printing Parameters on the Residual Stress Using Numerical Simulation


Cite

Aliheidari, N. et al. 2017. Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polymer Testing 60, pp. 94–101. doi: 10.1016/j.polymertesting.2017.03.016.10.1016/j.polymertesting.2017.03.016 Search in Google Scholar

Alsardia, T. et al. 2021. PROTOTYPE FOR FIT INVESTIGATIONS. Design of Machines and Structures 11(1), pp. 5–15. doi: 10.32972/dms.2021.001.10.32972/dms.2021.001 Search in Google Scholar

Casavola, C. et al. 2017. Residual stress measurement in Fused Deposition Modelling parts. Polymer Testing 58, pp. 249–255. doi: 10.1016/j.polymertesting.2017.01.003.10.1016/j.polymertesting.2017.01.003 Search in Google Scholar

Cuan-Urquizo, E. et al. 2019. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials 12(6), p. 895. doi: 10.3390/ma12060895.10.3390/ma12060895647126230889796 Search in Google Scholar

Dilberoglu, U.M. et al. 2017. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manufacturing 11, pp. 545–554. doi: 10.1016/j.promfg.2017.07.148.10.1016/j.promfg.2017.07.148 Search in Google Scholar

Ficzere, P. et al. 2017. Reduction possibility of residual stresses from additive manufacturing by photostress method. Materials Today: Proceedings 4(5), pp. 5797–5802. doi: 10.1016/j.matpr.2017.06.048.10.1016/j.matpr.2017.06.048 Search in Google Scholar

Gebhardt, A. 2011. Understanding Additive Manufacturing. Carl Hanser Verlag GmbH & Co. KG. doi: 10.3139/9783446431621.10.3139/9783446431621 Search in Google Scholar

Gibson, I. et al. 2015. Additive Manufacturing Technologies. New York, NY: Springer New York. doi: 10.1007/978-1-4939-2113-3.10.1007/978-1-4939-2113-3 Search in Google Scholar

Hadny, A. et al. 2022. Optimization of Injection Molding Simulation of Bioabsorbable Bone Screw Using Taguchi Method and Particle Swarm Optimization. Jordan Journal of Mechanical and Industrial Engineering 16(2), pp. 319–325. Search in Google Scholar

Harun, W.S.W. et al. 2018. A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technology 331, pp. 74–97. doi: 10.1016/j.powtec.2018.03.010.10.1016/j.powtec.2018.03.010 Search in Google Scholar

Jyothishand Kumar, L. and Krishnadas Nair, C.G. 2017. Current Trends of Additive Manufacturing in the Aerospace Industry. In: Wimpenny David Ian and Pandey, P. M. and K. L. J. ed. Advances in 3D Printing & Additive Manufacturing Technologies. Singapore: Springer Singapore, pp. 39–54. Available at: https://doi.org/10.1007/978-981-10-0812-2_4.10.1007/978-981-10-0812-2_4 Search in Google Scholar

Kantaros, A. and Karalekas, D. 2013. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Materials & Design 50, pp. 44–50. doi: 10.1016/j.matdes.2013.02.067.10.1016/j.matdes.2013.02.067 Search in Google Scholar

Lipton, J.I. et al. 2015. Additive manufacturing for the food industry. Trends in Food Science & Technology 43(1), pp. 114–123. doi: 10.1016/j.tifs.2015.02.004.10.1016/j.tifs.2015.02.004 Search in Google Scholar

Mousa, A.A. 2014. The Effects of Content and Surface Modification of Filler on the Mechanical Properties of Selective Laser Sintered Polyamide12 Composites. Jordan Journal of Mechanical and Industrial Engineering 8, pp. 265–274. Search in Google Scholar

Safronov, V.A. et al. 2017. Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion. Journal of Manufacturing Science and Engineering 139(3). doi: 10.1115/1.4034714.10.1115/1.4034714 Search in Google Scholar

Withers, P.J. and Bhadeshia, H.K.D.H. 2001. Residual stress part 1 - Measurement techniques. Materials Science and Technology 17(4), pp. 355–365. doi: 10.1179/026708301101509980.10.1179/026708301101509980 Search in Google Scholar