Acceso abierto

Recycling of Asbestos-Cement Waste – An Opportunity or a Threat?


Cite

Asbestos Base: https://bazaazbestowa.gov.pl/pl/ (accessed on 07 February 2022) Search in Google Scholar

Asbestos Data Sheet - Mineral Commodity Summaries 2020, U.S. Geological Survey, Mineral Commodity Summaries, January 2020: file:///D:/Desktop/mcs2020-asbestos.pdf (accessed on 13 February 2022) Search in Google Scholar

Dong, W., Li, W., Tao, Z., 2021. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet, Resources, Conservation & Recycling, 172, 105664, DOI: 10.1016/j.resconrec.2021.10566410.1016/j.resconrec.2021.105664 Search in Google Scholar

Frank, A. L., 2020. Global use of asbestos - legitimate and illegitimate issues, Journal of Occupational Medicine and Toxicology, 15:16, DOI: 10.1186/s12995-020-00267-y10.1186/s12995-020-00267-y729476232549902 Search in Google Scholar

Gualtieri, A. F., 2013. Recycling asbestos- containing material (ACM) from construction and demolition waste (CDW): Handbook of Recycled Concrete and Demolition Waste, 500-525, DOI: 10.1533/9780857096906.4.50010.1533/9780857096906.4.500 Search in Google Scholar

Gualtieri, A. F., Boccaletti, M., 2011. Recycling of the product of thermal inertization of cement–asbestos for the production of concrete, Construction and Building Materials, 25, 3561-3569, DOI: 10.1016/j.conbuildmat.2011.03.04910.1016/j.conbuildmat.2011.03.049 Search in Google Scholar

Gualtieri, A. F., Tartaglia, A., 2000. Thermal decomposition of asbestos and recycling in traditional ceramics, Journal of the European Ceramic Society, 20, 1409-1418.10.1016/S0955-2219(99)00290-3 Search in Google Scholar

Gualtieri, A. F., Veratti, L., Tucci, A., Esposito, L., 2012. Recycling of the product of thermal inertization of cement-asbestos in geopolymers, Construction and Building Materials, 31, 47-51, DOI: 10.1016/j.conbuildmat.2011.12.08710.1016/j.conbuildmat.2011.12.087 Search in Google Scholar

Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136, DOI: 10.17512/bozpe.2019.1.1410.17512/bozpe.2019.1.14 Search in Google Scholar

Hui, T., Sun, H. J., Peng, T. J., 2021. Preparation and characterization of cordierite-based ceramic foams with permeable property from asbestos tailings and coal fly ash, Journal of Alloys and Compounds, 885, DOI: 10.1016/j.jallcom.2021.16096710.1016/j.jallcom.2021.160967 Search in Google Scholar

International Ban Asbestos Secretariat: http://ibasecretariat.org/graphics_page.php (accessed on 13 February 2022) Search in Google Scholar

Iwaszko, J., Lubas, M., Sitarz, M., Zajemska, M., Nowak, A., 2021. Production of vitrified material from hazardous asbestos-cement waste and CRT glass cullet, Journal of Cleaner Production, 317, DOI: 10.1016/j.jclepro.2021.12834510.1016/j.jclepro.2021.128345 Search in Google Scholar

Iwaszko, J., Przerada, I., Zawada, A., 2017. Microstructural aspects of high-energy milling of asbestos-cement materials, Ceramic Materials, 69, 2, 84-89. Search in Google Scholar

Jura, J., 2020. Influence of type of biomass burned on the properties of cement mortar containing fly ash, Construction of optimized energy potential, 9, 1, 77-82, DOI: 10.17512/bozpe.2020.1.0910.17512/bozpe.2020.1.09 Search in Google Scholar

Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708: https://doi.org/10.3390/ma1421670810.3390/ma14216708858703534772233 Search in Google Scholar

Kumar Goyal, R., Agarwal, V., Gupta, R., Rathore, K., Somani, P., 2021. Optimum utilization of ceramic tile waste for enhancing concrete properties, Materials Today: Proceedings, 49, 1769-1775, DOI: 10.1016/j.matpr.2021.08.01110.1016/j.matpr.2021.08.011 Search in Google Scholar

Kusiorowski, R., Zaremba, T., Piotrowski, J., Jung, T., 2014. Zastosowanie odpadów azbestowych w masach ceramicznych do produkcji ceramiki budowlanej, Materiały Ceramiczne, 66, 3, 245-252. Search in Google Scholar

Kusiorowski, R., Zaremba, T., Piotrowski, J., 2015. Wykorzystanie odpadów zawierających azbest do wytwarzania ceramicznych materiałów budowlanych o czerepie spieczonym, Materiały Ceramiczne, 67, 3, 279-285. Search in Google Scholar

Kusiorowski, R., Zaremba, T., Piotrowski, J., 2014. The potential use of cement– asbestos waste in the ceramic masses destined for sintered wall clay brick manufacture, Ceramics International, 40, 11995-12002, DOI: 10.1016/j.ceramint.2014.04.03710.1016/j.ceramint.2014.04.037 Search in Google Scholar

Leonelli, C., Veronesi, P., Boccaccini, D. N., Rivasi, M. R., Barbieri, L., Andreola, F., Lancellotti, I., Rabitti, D., Pellacani G. C., 2006. Microwave Thermal Inertisation of Asbestos Containing Waste and its Recycling in Traditional Ceramics, Journal of Hazardous Materials, 135(1-3), 149-155, DOI: 10.1016/j.jhazmat.2005.11.03510.1016/j.jhazmat.2005.11.03516406335 Search in Google Scholar

Łuniewski, S., Łuniewski A., 2019. Selected legal and financial conditions for the liquidation of asbestos and products containing asbestos illustrated with an example of rural municipalities in the podlaskie voivodeship, Ekonomia i Środowisko, 3(70), 154-166, DOI: 10.34659/2019/3/41 Search in Google Scholar

Martin, J., Beauparlant, M., Sauvé, S., L’Espérance, G., 2017. Effect of accelerating voltage on beam damage of asbestos fibers in the transmission electron microscope (TEM), Micron 96, 1-8, DOI: 10.1016/j.micron.2017.01.00610.1016/j.micron.2017.01.00628199862 Search in Google Scholar

Obmiński, A., 2021. Asbestos waste recycling using the microwave technique – Benefits and risks, Environmental Nanotechnology, Monitoring & Management, 16, 100577, DOI: 10.1016/j.enmm.2021.10057710.1016/j.enmm.2021.100577 Search in Google Scholar

Pawełczyk, A., Božek, F., Grabas. K., Chęcmanowski, J., 2017. Chemical elimination of the harmful properties of asbestos from military facilities, Waste Management, 61, 377-385, DOI: 10.1016/j.wasman.2016.11.04110.1016/j.wasman.2016.11.04127979425 Search in Google Scholar

Pietrzak, A., 2018. Ocena wpływu recyklatów z butelek PET na wybrane właściwości betonu, Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 7, 1, 51-56, DOI: 10.17512/bozpe.2018.1.0710.17512/bozpe.2018.1.07 Search in Google Scholar

Pietrzak, A., 2019. Wpływ popiołów powstałych ze spalania osadów ściekowych na podstawowe właściwości mechaniczne betonu, Construction of optimized energy potential, 8, 1, 29-35, DOI: 10.17512/bozpe.2019.1.0310.17512/bozpe.2019.1.03 Search in Google Scholar

Pietrzak, A., Ulewicz, M., 2017. Wpływ odpadów ze stłuczki szklanej kineskopowej (CRT) na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 49-50, DOI: 10.15199/33.2017.10.1610.15199/33.2017.10.16 Search in Google Scholar

Pietrzak, A., Ulewicz, M., 2018. Wpływ poużytkowych odpadów wykładzin samochodowych na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 85-86, DOI: 10.15199/33.2018.10.2610.15199/33.2018.10.26 Search in Google Scholar

Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal flyash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), Vol. 9, No 1, 89-96, DOI: 10.17512/bozpe.2020.1.1110.17512/bozpe.2020.1.11 Search in Google Scholar

Ranaivomanana, H., Leklou, N., 2021. Investigation of microstructural and mechanical properties of partially hydrated Asbestos-Free fiber cement waste (AFFC) based concretes: Experimental study and predictive modeling, Construction and Building Materials, 277, DOI: 10.1016/j.conbuildmat.2020.12194310.1016/j.conbuildmat.2020.121943 Search in Google Scholar

Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing, 52(2), 1002−1010, DOI: 10.5277/ppmp160237 Search in Google Scholar

Ulewicz, M., Liszewski, W., 2020. Influence of public financial support on the process of roof covering replacement and safety of civil structures, System Safety: Human - Technical Facility -Environment, 2, 1, 259-267, DOI: 10.2478/czoto-2020-003210.2478/czoto-2020-0032 Search in Google Scholar

Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872: https://doi.org/10.3390/ma1404087210.3390/ma14040872791859633670384 Search in Google Scholar

Viani, A., Gualtieri A. F., 2014. Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes, Cement and Concrete Research, 58, 56-66, DOI: 10.1016/j.cemconres.2013.11.01610.1016/j.cemconres.2013.11.016 Search in Google Scholar

Wójcik, M., 2018. Azbest w odpadach motoryzacyjnych. Współczesne metody recyklingu odpadów azbestowych z sektora motoryzacyjnego, Autobusy, 4, 27-32, DOI: 10.24136/atest.2018.01610.24136/atest.2018.016 Search in Google Scholar

Yoshikawa, N., Kashimura, K., Hashiguchi, M., Sato, M., Horikoshi, S., Mitani, T., Shinohara N., 2015. Detoxification mechanism of asbestos materials by microwave treatment, Journal of Hazardous Materials, 284, 201-206, DOI: 10.1016/j.jhazmat.2014.09.03010.1016/j.jhazmat.2014.09.03025463234 Search in Google Scholar