Acceso abierto

A Study of the Reaction Between Quinone and 2R4F Cigarette Smoke Condensate

   | 30 dic 2014

Cite

1. Stedman, R. L.: The chemical composition of tobacco and tobacco smoke; Chem. Rev. 68 (1967) 153–207. Baker, R. R.: Smoke chemistry; in: Tobacco Pro-duction, Chemistry and Technology; edited by Davis10.1021/cr60252a0024868017Search in Google Scholar

2. L. D. and M. T. Nielson, Blackwell Science, Oxford, UK, 2001, pp. 308–439.Search in Google Scholar

3. Wooten, J. B., S. Chouchane, and T. E. McGrath: Tobacco smoke constituents affecting oxidative stress, in: Cigarette Smoke and Oxidative Stress, edited by Halliwell B. B. and H. E. Poulsen, Springer, Berlin, 2006, pp. 5–46.10.1007/3-540-32232-9_2Search in Google Scholar

4. Halliwell, B. B. and H. E. Poulsen: Cigarette smoke and oxidative stress, Springer, Berlin, 2006, pp. 1–100.10.1007/3-540-32232-9Search in Google Scholar

5. Pryor, W. A., D. G. Prier, and D. F. Church: Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar; Env. Health Pers. 47 (1983) 345–355.Search in Google Scholar

6. Pryor, W. A. and K. Stone: Oxidants in cigarette smoke; Anal. N. Y. Acad. Sci. 686 (1993) 12–27.10.1111/j.1749-6632.1993.tb39148.x8512242Search in Google Scholar

7. Maskos, Z., L. Khachatryan, R. Cueto, W. A. Pryor, and B. Dellinger: Radicals from the pyrolysis of tobacco; Energy & Fuels 19 (2005) 791–799.Search in Google Scholar

8. Chouchane, S, J. B. Wooten, F J. Tewes, A. Wittig, B. P. Muller, D. Veltel, and J. Diekmann: Involvement of semiquinone radicals in the in vitro cytotoxicity of cigarette mainstream smoke; Chem. Res. Toxicol. 19 (2006) 1602–1610.Search in Google Scholar

9. Stohs, S. J., D. Bagchi, and M. Bagchi: Toxicity of trace elements in tobacco smoke; Inhalation Toxicol. 9 (1997) 867–890.Search in Google Scholar

10. Yan, F., S. Williams, G. D. Griffin, R. Jagannathan, S. E. Plunkett, K. H. Shafer, and T. Vo-Dinh: Near-real-time determination of hydrogen peroxide generated from cigarette smoke; J. Environ. Monit. 7 (2005) 681–687.Search in Google Scholar

11. Pethig, P. R. C. Gascoyne, J. A. McLaughlin, and A. Szent-Gyogyi: Ascorbate-quinone interactions: electrochemical, free radical and cytotoxic properties; Proc. Natl. Acad. Sci. 80 (1983) 129–132.Search in Google Scholar

12. Leanderson, P. and C. Tagesson: Cigarette smoke-induced DNA-damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine; Chem. Biol. Interactions 75 (1990) 71–81.Search in Google Scholar

13. Seike, K., M. Murata, S. Oikawa, Y. Hiraku, K. Hirakawa, and S. Kawanishi: Oxidative DNA damage induced by benz[a]anthracene metabolites via redox cycles of quinone and unique non-quinone; Chem. Res. Toxicol. 16 (2003) 1470–1476.Search in Google Scholar

14. Li, Y. and M. A. Trush: Oxidation of hydroquinone by copper: chemical mechanism and biological effects, Arch. Biochem. Biophys.; 300 (1993) 346–355.Search in Google Scholar

15. Li, Y. and M. A. Trush: DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation; Carcinogenesis 14 (1993) 1303–1311.Search in Google Scholar

16. Roginsky, V. A., L. M. Pisarenko, W. Bors and C. Michel: The kinetics and thermodynamics of quinone-semiquinone-hydroquinone systems under physiological conditions; J. Chem. Soc. Perkin Trans. 2 (1999) 871–876.Search in Google Scholar

17. Maroz, A. and O. Brede: Reaction of radicals with benzoquinone-addition of electron transfer, Radiat. Physics Chem. 67 (2003) 275–278.Search in Google Scholar

18. Nicolaou, K. C., S. A. Snyder, T. Montangnon, and G. Vassilikogiannakis: The Diels-Alder reaction in total synthesis; Angew. Chem. Int. Ed. 41 (2002) 1668–1698.Search in Google Scholar

19. Yates, P. and K. Switlak: The 1:1 and 2:1 adducts of cyclopentadiene with p-benzoquinone; Can. J. Chem. 68 (1990) 1894–1900.Search in Google Scholar

20. Coleman, W. M.: A Diels-Alder reaction between cigarette mainstream smoke components; Beitr. Tabakforsch. Int. (2009) 121–138.Search in Google Scholar

21. Johnson, D., B. Quimby, and J. Sullivan: An atomic emission detector for gas chromatography; Amer. Lab. October (1995) 1–5.Search in Google Scholar

22. Webster, C. and M. Cooke: Use of an atomic emission detector to study the variation in elemental response for chlorine, carbon, and oxygen in phenols; J. High Resol. Chromatogr. 18 (1995) 319–322.Search in Google Scholar

23. Quimby, B. D. and J. J. Sullivan: Evaluation of a microwave cavity, discharge tube, and gas flow system for combined gas chromatography-atomic emission detection; Anal. Chem. 62 (1990) 1027–1034.Search in Google Scholar

24. Sullivan J. J. and B. D. Quimby: Characterization of computerized photodiode array spectrometer for gas chromatograph-atomic emission spectrometry; Anal. Chem. 62 (1990) 1034–1043.Search in Google Scholar

25. Juillet, Y., E. Gilbert, A. Begos, and B. Bellier: Investigation of compound-independent calibration and partial molecular formula determination by gas chromatography-atomic-emission detection for characterization of organophosphorus and organo-sulfur agents related to the chemical weapons con-vention; Anal. Bioanal. Chem. 383 (2005) 848–856.Search in Google Scholar

26. Quimby, B. D., P. C. Dryden, and J. J. Sullivan: Selective detection of stable-isotope labeled com-pounds using gas chromatography-emission spectro-metry, Synthesis and applications of isotopically labeled compounds 1991, Proc. Int. Symp, 4th (1991) 128–132.Search in Google Scholar

27. Quimby, B. D., P. A. Larson, and P. C. Dryden: A comparison of the HP G2350 AED versus HP 5921A AED for average values of MDL and selectivity for selected elements; HP Application Note 228–363, 1996.Search in Google Scholar

28. Stevens, N. A. and M. F. Borgerding: effect of column flow rate and sample injection mode on compound-independent calibration using gas chromatography with atomic emission detection; Anal. Chem. 70 (1998) 4223–4227.Search in Google Scholar

29. Yu, J., L. T. Taylor, S. Aref, J. A. Bodnar, and M. F. Borgerding: Influence of puffing parameters and filter Vent blocking condition on nicotine fate in a burning cigarette part 1. full flavor cigarettes; Beitr. Tabak-forsch. Int. 22 (2006) 185–195.Search in Google Scholar

30. Janak, K., C. Ostman, H. Carlsson, A. Bemgard, and A. Colmsjo: Instrument-induced effects in the analysis of polycyclic aromatic compounds by capillary gas chromatography with atomic emission detection (GC-AED); J. High Resol. Chromatogr. 17 (2004) 135–140.Search in Google Scholar

31. Klus, H. and H. Kuhn: Distribution of various tobacco smoke constituents in main- and side-stream smoke (a review); Beitr. Tabakforsch. Int. 11 (1973) 229–265.Search in Google Scholar

32. Borgerding, M. and H. Klus; Analysis of complex mixtures-cigarette smoke; Exper. Toxic. Pathology, 57 (2005) 43–73.Search in Google Scholar

33. Schonher, H., H. -J. Klimisch and H. -P. Harket: Aging of cigarette smoke concentrate quantitative investigations of artifact formation by gas and particulate phase reactions; Beitr. Tabakforsch. Int. 7 (1973) 18–23.Search in Google Scholar

34. Einolf, W. N., R. N. Ferguson, J. F. Whidby and J. F. DeBardeleben: Isolation and identification of 2,6-dimethyl and 2,2,6-trimethyl-4-piperidone, artifacts produced by the reaction of cigarette smoke condensate and acetone; Beitr. Tabakforsch. Int. 9 (1978) 208–213.Search in Google Scholar

35. Meckley, D. R., J. H. Hayes, K. R. Van Kampen, A. T. Mosberg and J. E. Swauger: A responsive, sensitive, and reproducible dermal tumor promotion assay for the comparative evaluation of cigarette smoke condensates; Reg. Tox. Pharam. 39 (2004) 135–149.Search in Google Scholar

36. Coleman, W. M.: Unpublished results; September 2007.Search in Google Scholar

37. Bartalis, C., W. G. Chan, and J. B. Wooten: A new look at radicals in cigarette smoke; Anal. Chem. 79 (2007) 5103–5106.Search in Google Scholar

38. Beake, B. D., R. B. Moodie, and J. P. B. Sandall: The kinetics and mechanism of oxidation of hydroquinone and chlorohydroquinone in the presence of nitrous acid and aqueous acid solution; J. Chem. Soc. Perkin Trans. 2 (1994) 957-960.Search in Google Scholar

39. Polgatti, V., J. A. Valderrama, and R. Tapia: Studies on quinones. XIX. Improved synthesis of 2-nitro-1,4-benzoquinone and its reaction with nucleophiles; Syn. Comm. 20(8) (1990) 1085-1090.Search in Google Scholar

40. Urios, A., M. P. L. -Gresa, M. C. Gonzalez, J. Prima, A. Martinez, G. Herrera, J. C. Escudero, J. -E. O'Connor, and M. Blanco; Nitric oxide promotes strong cytotoxicity of phenolic compounds against eschericia coli: The influence of antioxidant defenses; Free Radical Biology & Medicine 35(11) (2003) 1373-1381.Search in Google Scholar

41. Juillet, Y., E. Gilbert, A. Begos, and B. Beillier: Investigation of compound-independent calibration and partial molecular formula determination by gas chromatography-atomic-emission detection for characterization of organophosphorus and organo-sulfur agents related to the chemical weapons con-vention; Anal. Bioanal. Chem. 383 (2005) 848–856.Search in Google Scholar

eISSN:
1612-9237
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
General Interest, Life Sciences, other, Physics