1. bookVolumen 6 (2020): Edición 2 (December 2020)
Detalles de la revista
License
Formato
Revista
eISSN
2459-5616
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Comparing classification algorithms for prediction on CROBEX data

Publicado en línea: 05 Jan 2021
Volumen & Edición: Volumen 6 (2020) - Edición 2 (December 2020)
Páginas: 4 - 11
Recibido: 31 Oct 2020
Aceptado: 17 Nov 2020
Detalles de la revista
License
Formato
Revista
eISSN
2459-5616
Primera edición
16 Apr 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés

1. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford. Search in Google Scholar

2. Breiman, L. (2001). Random Forests. Machine Learning, Vol. 45, No. 1, pp. 5-32.10.1023/A:1010933404324 Search in Google Scholar

3. Bruni, R. (2017). Stock Market Index Data and indicators for Day Trading as a Binary Classification problem. Data in Brief, Vol. 10, pp. 569-575.10.1016/j.dib.2016.12.044521960528070548 Search in Google Scholar

4. Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine Learning Research, Vol. 7, pp. 1-30. Search in Google Scholar

5. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, Vol. 20, No. 1, pp. 37-46.10.1177/001316446002000104 Search in Google Scholar

6. Hall, P., Park, B. U., Samworth, R. J. (2008). Choice of neighbor order in nearest-neighbor classification. Annals of Statistics, Vol. 36, No. 5, pp. 2135-2152.10.1214/07-AOS537 Search in Google Scholar

7. Hastie, T., Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York. Search in Google Scholar

8. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall. Search in Google Scholar

9. Ho, T. K. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 832-844. Search in Google Scholar

10. Hyndman, R. J., Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts, Melbourne. Search in Google Scholar

11. Ince, H., Trafalis, T. B. (2007). Kernel principal component analysis and support vector machines for stock price prediction. IIE Transactions, Vol. 39, No. 6, pp. 629-637.10.1080/07408170600897486 Search in Google Scholar

12. Izenman, A. J. (2008). Modern multivariate statistical techniques: Regression, classification, and manifold learning. Springer, New York. Search in Google Scholar

13. James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer, New York. Search in Google Scholar

14. Kara, Y., Boyacioglu, M. A., Baykan, O. K. (2011). Predicting direction of stock Price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange. Expert Systems with Applications, Vol. 38, pp. 5311-5319.10.1016/j.eswa.2010.10.027 Search in Google Scholar

15. Kimoto, K., Asakawa, K., Yoda, M., Takeoka, M. (1990). Stock market prediction system with modular neural network. In Proceedings of the International Joint Conference on Neural Networks, San Diego.10.1109/IJCNN.1990.137535 Search in Google Scholar

16. Kuhn, M., Johnson, K. (2013). Applied predictive modeling. Springer, New York.10.1007/978-1-4614-6849-3 Search in Google Scholar

17. Manojlović, T., Štajduhar, I. (2015). Predicting Stock Market Trends Using Random Forests: A Sample of the Zagreb Stock Exchange. In Proceedings of MIPRO CIS - Intelligent Systems Conference.10.1109/MIPRO.2015.7160456 Search in Google Scholar

18. Mizuno, H., Kosaka, M., Yajima, H., Komoda, N. (1998). Application of Neural Network to Technical Analysis of Stock Market Prediction. Studies in Informatic and Control, Vol. 7, No. 3, pp. 111-120. Search in Google Scholar

19. Moreira, J. M., Jorge, A. M., Soares, C., Sousa, D. J. F. (2006). Improving SVM-Linear predictions using CART for example selection. In Proceedings of the 16th International Conference on Foundations of Intelligent Systems, Springer-Verlag.10.1007/11875604_70 Search in Google Scholar

20. Murty, M. N., Devi, V. S. (2011). Pattern Recognition: An Algorithmic Approach. Springer-Verlag, London. Search in Google Scholar

21. Shin, F. B., Kil, D. H. (1998). Classification Cramer–Rao bounds on stock price prediction. Journal of Forecasting, Vol. 17, No. 5-6, pp. 389-399.10.1002/(SICI)1099-131X(1998090)17:5/6<389::AID-FOR703>3.0.CO;2-N Search in Google Scholar

22. Qi, M., Zhang, G. P. (2008). Trend time series modeling and forecasting with neural networks. IEEE Transactions on Neural Networks, Vol. 19, No. 5, pp. 808-816. Search in Google Scholar

23. Qian, B., Rasheed, K. (2007). Stock market prediction with multiple classifiers. Applied Intelligence, Vol. 26, No. 1, pp. 25-33.10.1007/s10489-006-0001-7 Search in Google Scholar

24. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Search in Google Scholar

25. Ripley, B. D. (2007). Pattern Recognition and Neural Networks. Cambridge University Press. Search in Google Scholar

26. Russell, S. J. (2010). Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle River. Search in Google Scholar

27. Šego, B., Škrinjarić, T. (2018). Kvantitativna istraživanja Zagrebačke burze - pregled istraživanja od osnutka do 2018. godine. Ekonomski pregled, Vol. 69, No. 6, pp. 655-743. Search in Google Scholar

28. The Zagreb Stock Exchange (2020). Index page. Available at www.zse.hr [13 January 2020]. Search in Google Scholar

29. Vlah Jerić, S. (2020a). Evaluation of Alternative Approaches in Classification Algorithms for Prediction of Stock Market Index: Case of Crobex. In Recent Applications of Financial Risk Modelling and Portfolio Management, Škrinjarić, T., Čižmešija, M., Christiansen, B. (Eds.), IGI Global, USA.10.4018/978-1-7998-5083-0.ch010 Search in Google Scholar

30. Vlah Jerić, S. (2020b). Rule Extraction from Random Forest for Intra-Day Trading Using CROBEX Data. Proceedings of 11th FEB Zagreb International Odyssey Conference on Economics and Business, pp. 411-419. Search in Google Scholar

31. Zemke, S. (1999). Nonlinear index prediction. Physica A: Statistical Mechanics and its Applications, Vol. 269, No. 1, pp. 177-183.10.1016/S0378-4371(99)00091-6 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo