Cite

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816. Search in Google Scholar

Amato MP, Ponziani G. Quantification of impairment in MS: Discussion of the scales in use. Mult Scler. 1999;5(4):216-9. Search in Google Scholar

Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385(9963):117. Search in Google Scholar

Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4): 1219. Search in Google Scholar

Kalkman HO. An Explanation for the Adiponectin Paradox. Pharmaceuticals (Basel). 2021;14(12). Search in Google Scholar

Chudek J, Adamczak M, Karkoszka H, Budziński G, Ignacy W, Funahashi T, et al. Plasma adiponectin concentration before and after successful kidney transplantation. Transplant Proc. 2003;35(6): 2186-9. Search in Google Scholar

Suh SH, Oh TR, Choi HS, Kim CS, Lee J, Oh YK, et al. Association of high serum adiponectin level with adverse cardiovascular outcomes and progression of coronary artery calcification in patients with pre-dialysis chronic kidney disease. Front Cardiovasc Med. 2022;8. Search in Google Scholar

Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gürke J, Fischer B, et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod. 2017;32(7):1382-92. Search in Google Scholar

Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, et al. Adiponectin: a pleiotropic hormone with multifaceted roles. Probl Endokrinol (Mosk). 2021;67(6):98-112. Search in Google Scholar

Peng YJ, Shen TL, Chen YS, Mersmann HJ, Liu BH, Ding ST. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J Biomed Sci. 2018;25(1):1-13. Search in Google Scholar

Kono M, Nagafuchi Y, Shoda H, Fujio K. The impact of obesity and a high-fat diet on clinical and immunological features in systemic lupus erythematosus. Nutrients. 2021;13(2):1-12. Search in Google Scholar

Schovanek J, Krupka M, Cibickova L, Karhanova M, Reddy S, Kucerova V, et al. Adipocytokines in Graves’ orbitopathy and the effect of high-dose corticosteroids. Adipocyte. 2021;10(1):456. Search in Google Scholar

Katsiougiannis S, Tenta R, Skopouli FN. Autoimmune epithelitis (Sjögren’s syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity. J Autoimmun. 2019;104: 102335. Search in Google Scholar

Szabo CE, Man OI, Istrate A, Kiss E, Catana A, Creț V, et al. Role of adiponectin and tumor necrosis factor-alpha in the pathogenesis and evolution of Type 1 diabetes mellitus in children and adolescents. Diagnostics. 2020;10(11). Search in Google Scholar

Stroikova V, Fischer A, Bockstahler M, Müller AM, Katus HA, Kaya Z. Adiponectin deficiency has no effect in murine autoimmune myocarditis. Cytokine. 2019;116:139-49. Search in Google Scholar

Cheng X, Folco EJ, Shimizu K, Libby P. Adiponectin Induces Pro-inflammatory Programs in Human Macrophages and CD4+ T Cells. J Biol Chem. 2012;287(44):36896-904. Search in Google Scholar

Peake P, Shen Y. Factor H binds to the N-terminus of adiponectin and modulates complement activation. Biochem Biophys Res Commun. 2010;397(2):361-6. Search in Google Scholar

Ye JJ, Bian X, Lim J, Medzhitov R. Adiponectin and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. Proc Natl Acad Sci U S A. 2020;117(29):17381-8. Search in Google Scholar

Devaraj S, Torok N, Dasu MR, Samols D, Jialal I. Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells: Evidence for an adipose tissue-vascular loop. Arterioscler Thromb Vasc Biol. 2008;28(7):1368-74. Search in Google Scholar

Murayama MA, Chi HH, Matsuoka M, Ono T, Iwakura Y. The CTRP3-AdipoR2 Axis Regulates the Development of Experimental Autoimmune Encephalomyelitis by Suppressing Th17 Cell Differentiation. Front Immunol. 2021;12. Search in Google Scholar

Penesova A, Vlcek M, Imrich R, Vernerova L, Marko A, Meskova M, et al. Hyperinsulinemia in newly diagnosed patients with multiple sclerosis. Metab Brain Dis. 2015;30(4):895-901. Search in Google Scholar

Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and multiple sclerosis: A mendelian randomization study. PLoS Med. 2016;13(6). Search in Google Scholar

Harroud A, Mitchell RE, Richardson TG, Morris JA, Forgetta V, Davey Smith G, et al. Childhood obesity and multiple sclerosis: A mendelian randomization study. Mult Scler. 2021;27(14):2150-8. Search in Google Scholar

Devorak J, Mokry LE, Morris JA, Forgetta V, Davey Smith G, Sawcer S, et al. Large differences in adiponectin levels have no clear effect on multiple sclerosis risk: A Mendelian randomization study. Mult Scler. 2017;23(11):1461-8. Search in Google Scholar

Harroud A, Manousaki D, Butler-Laporte G, Mitchell RE, Davey Smith G, Richards JB, et al. The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: A Mendelian randomization mediation analysis. Mult Scler. 2021; 27(13):1994-2000. Search in Google Scholar

Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D, Molanouri Shamsi M. Effect of aerobic interval training on serum IL-10, TNFα, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017;57(2): 262-71. Search in Google Scholar

Majdinasab N, Motl RW, Mokhtarzade M, Zimmer P, Ranjbar R, Keytsman C, et al. Acute responses of cytokines and adipokines to aerobic exercise in relapsing vs. remitting women with multiple sclerosis. Complement Ther Clin Pract. 2018;31:295-301. Search in Google Scholar

Yousefian M, Nemati R, Daryabor G, Gholijani N, Nikseresht A, Borhani-Haghighi A, et al. Gender-specific association of leptin and adiponectin genes with multiple sclerosis. Am J Med Sci. 2018;356(2): 159-67. Search in Google Scholar

Piccio L, Cantoni C, Henderson JG, Hawiger D, Ramsbottom M, Mikesell R, et al. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol. 2013;43(8):2089-100. Search in Google Scholar

Çoban A, Düzel B, Tüzün E, Tamam Y. Investigation of the prognostic value of adipokines in multiple sclerosis. Mult Scler Relat Disord. 2017;15:11-4. Search in Google Scholar

Signoriello E, Lus G, Polito R, Casertano S, Scudiero O, Coletta M, et al. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur J Neurol. 2019;26(2):348-55. Search in Google Scholar

Düzel B, Tamam Y, Çoban A, Tüzün E. Adipokines in multiple sclerosis patients with and without optic neuritis as the first clinical presentation. Immunol Invest. 2019;48(2):190-7. Search in Google Scholar

Keyhanian K, Saxena S, Gombolay G, Healy BC, Misra M, Chitnis T. Adipokines are associated with pediatric multiple sclerosis risk and course. Mult Scler Relat Disord. 2019;36. Search in Google Scholar

Kvistad SS, Myhr KM, Holmøy T, Benth JŠ, Wergeland S, Beiske AG, et al. Serum levels of leptin and adiponectin are not associated with disease activity or treatment response in multiple sclerosis. J Neuroimmunol. 2018;323:73-7. Search in Google Scholar

Natarajan R, Hagman S, Hämälainen M, Leppänen T, Dastidar P, Moilanen E, et al. Adipsin is associated with multiple sclerosis: A follow-up study of adipokines. Mult Scler Int. 2015;2015:1-9. Search in Google Scholar

Baranowska-Bik A, Uchman D, Litwiniuk A, Kalisz M, Martyńska L, Baranowska B, et al. Peripheral levels of selected adipokines in patients with newly diagnosed multiple sclerosis. Endokrynol Pol. 2020;71(2):109-15. Search in Google Scholar

Mezzaroba L, Simão ANC, Oliveira SR, Flauzino T, Alfieri DF, de Carvalho Jennings Pereira WL, et al. Antioxidant and anti-inflammatory diagnostic biomarkers in multiple sclerosis: A machine learning study. Mol Neurobiol. 2020;57(5):2167-78. Search in Google Scholar

Signoriello E, Mallardo M, Nigro E, Polito R, Casertano S, Di Pietro A, et al. Adiponectin in cerebrospinal fluid from patients affected by multiple sclerosis is correlated with the progression and severity of disease. Mol Neurobiol. 2021;58(6):2663-70. Search in Google Scholar

Mamali I, Roupas ND, Armeni AK, Theodoropoulou A, Markou KB, Georgopoulos NA. Measurement of salivary resistin, visfatin and adiponectin levels. Peptides. 2012;33(1):120-4. Search in Google Scholar

Lehmann-Kalata A, Miechowicz I, Korybalska K, Swora-Cwynar E, Czepulis N, Łuczak J, et al. Salivary fingerprint of simple obesity. Cytokine. 2018;110:174-80. Search in Google Scholar

Attlee A, Hasan H, AlQattan A, Sarhan N, Alshammari R, Ali S, et al. Relationship of salivary adipocytokines, diet quality, physical activity, and nutrition status in adult Emirati females in United Arab Emirates. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):40-6. Search in Google Scholar

Zyśk B, Ostrowska L, Smarkusz-Zarzecka J. Salivary adipokine and cytokine levels as potential markers for the development of obesity and metabolic disorders. Int J Mol Sci. 2021;22(21). Search in Google Scholar

Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, et al. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC Trends Anal Chem. 2021;140:116281. Search in Google Scholar

eISSN:
2300-6676
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy