Acceso abierto

Determination of β-blocking receptor drugs in silica gel TLC systems with the mobile phase containing surfactant


Cite

1. Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterisation through their manipulation to beneficial clinical application. Cardiology. 2012;122(2):104-12.10.1159/00033927122759389 Search in Google Scholar

2. Davies CJ. Chromatography of β-adrenergic blocking agents. J Chromatogr Biome Appl. 1990;531:131-80.10.1016/S0378-4347(00)82283-5 Search in Google Scholar

3. Zejc A, Gorczyca M. Chemia leków. Second edition Warszawa: PZWL; 2002:247-62. Search in Google Scholar

4. Martinez V, Maguregui MI, Jimenez R M, A lonzo R M. Determination of the pKA values of beta-blockers by automated potentiometric titration. J Pharm Biomed Anal. 2000;23(2/3):459-68.10.1016/S0731-7085(00)00324-110933539 Search in Google Scholar

5. Saleem K, Ali I, Kulsum U, Aboul-Enein HY. Recent developments in HPLC analysis of β-blockers in biological Samples. J Chromatogr Sci. 2013;51:807-18.10.1093/chromsci/bmt03023619556 Search in Google Scholar

6. Cheng J-Q, Liu T, Nie X-M, Chen F-M, Wang C-S, Zhang F. Analysis of 27 β-blockers and metabolites in milk powder by High Performance Liquid Chromatography coupled to Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules. 2019;24:820-42;10.3390/molecules24040820641219130823583 Search in Google Scholar

7. Silva Gracia M, Köppl A, Unholzer S, Haen E. Development and validation of an HPLC-UV method for the simultaneous determination of the antipsychotic’s clozapine, olanzapine and quetiapine, several beta-blockers and their metabolites. Biomed Chromatogr. 2017;31:e3968.10.1002/bmc.396828266722 Search in Google Scholar

8. Gumieniczek A, Berecka A. Thin layer chromatography in drug analysis. Boca Raton: CRC Press; 2013:527-48. Search in Google Scholar

9. Ogrodowczyk M, Marciniec B. Comparative analysis of selected β-blockers. Acta Pol Pharm Drug Res. 2013;70:779-86. Search in Google Scholar

10. Krzek J, Kwiecień A. Application of densitometry for determination of beta-adrenergic-blocking agents in pharmaceutical preparations. J Planar Chromatogr. 2005;18:308-13.10.1556/JPC.18.2005.4.11 Search in Google Scholar

11. Gallegos A, Peavy T, Dixon R, Isseroff RR. Development of a novel ion-pairing UPLC method with cation-exchange solid-phase extraction for determination of free timolol in human plasma. J Chromatogr B. 2018;1086:228-35.10.1016/j.jchromb.2018.08.01630189376 Search in Google Scholar

12. Ruiz-Angel MJ, Carda-Broch S, Garcia-Alvarez-Coque MC. High submicellar liquid chromatography. Sep Purif Rev. 2014;43:124-54.10.1080/15422119.2012.743917 Search in Google Scholar

13. Peris-García E, Ruiz-Angela MJ, Carda-Broch S, García-Alvarez-Coque MC. Analysis of basic drugs by liquid chromatography with environmentally friendly mobile phases in pharmaceutical formulations. Microchem J. 2017;134:202-10.10.1016/j.microc.2017.06.009 Search in Google Scholar

14. Ruiz-Angela MJ, Pous-Torres S, Carda-Broch S, García-Alvarez-Coque MC. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases. J Chromatogr A. 2014;1344:76-82.10.1016/j.chroma.2014.04.01124767835 Search in Google Scholar

15. Rodenas-Montano J, Ortiz-Bolsico C, Ruiz-Angel MJ, García-Alvarez-Coque MC. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab®: Separation of basic compounds in urine samples. J Chromatogr A. 2014;1344:31-41.10.1016/j.chroma.2014.03.07324767834 Search in Google Scholar

16. Peris-Garcia E, Ortiz-Bolsico C, Baeza-Baeza JJ, Garcia-Alvarez Coque MC. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. J Sep Sci. 2015;38:2059-67.10.1002/jssc.20150014225866292 Search in Google Scholar

17. Sumina EG, Shtykov SN, Tyurina SV. Surfactants in thin-layer chromatography. J Anal Chem. 2003;58:720-30.10.1023/A:1025027409149 Search in Google Scholar

18. Subuddhi U, Mishra AK. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf B Biointerfaces. 2007;57:102-7.10.1016/j.colsurfb.2007.01.00917336505 Search in Google Scholar

19. Nurunnabi M, Zehedina K, Revuri V, Nafiujjaman M, Cha S, Cho S, Huh KM, et al. Design and strategies for bile acid mediated therapy and imaging. RSC Adv. 2016;6:73986-4002.10.1039/C6RA10978K Search in Google Scholar

20. [www.sigmaaldrich.com/deepweb/asseste/sigmaaldrich/product/documents/256/387/detergent-selection-guide.pdf] Search in Google Scholar

21. Madenci D, Egelhaaf SU. Self-assembly in aqueous bile salt solutions. Curr Opin Colloid Interface Sci. 2010;15:109-15.10.1016/j.cocis.2009.11.010 Search in Google Scholar

22. Matsuoka K, Suzuki M, Honda C, Endo K, Moroi Y. Micellization of conjugated chenodeoxy- and ursodeoxycholates and ssolubilisation of cholesterol into their micelles: comparison with other four conjugated bile salt species. Chem Phys Lipids. 2006;139:1-10.10.1016/j.chemphyslip.2005.08.00616256096 Search in Google Scholar

23. Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part I). Biochim Biophys Acta. 2002;1580:189-99.10.1016/S1388-1981(01)00203-7 Search in Google Scholar

24. Maslova VA, Kiselev MA. Structure of sodium cholate micelles. Crystall Rep. 2018;63:472-5.10.1134/S1063774518030173 Search in Google Scholar

eISSN:
2300-6676
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy