Cite

Andreani, M., Candila, V., & Petrella, L. (2022). Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data. In Mathematical and Statistical Methods for Actuarial Sciences and Finance: MAF 2022 (pp. 13–18). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-030-99638-3 AndreaniM. CandilaV. PetrellaL. 2022 Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data In Mathematical and Statistical Methods for Actuarial Sciences and Finance: MAF 2022 13 18 Cham Springer International Publishing http://doi.org/10.1007/978-3-030-99638-3 Search in Google Scholar

Angabini, A., Wasiuzzaman, S. (2011). GARCH Models and the Financial Crisis: A Study of the Malaysian. The International Journal of Applied Economics and Finance, 5(3), 226–236. https://doi.org/10.3923/ijaef.2011.226.236 AngabiniA. WasiuzzamanS. 2011 GARCH Models and the Financial Crisis: A Study of the Malaysian The International Journal of Applied Economics and Finance 5 3 226 236 https://doi.org/10.3923/ijaef.2011.226.236 Search in Google Scholar

Armstrong, J. S. (1989). Combining forecasts: The end of the beginning or the beginning of the end? International Journal of Forecasting, 5(4), 585–588. https://doi.org/10.1016/0169-2070(89)90013-7 ArmstrongJ. S. 1989 Combining forecasts: The end of the beginning or the beginning of the end? International Journal of Forecasting 5 4 585 588 https://doi.org/10.1016/0169-2070(89)90013-7 Search in Google Scholar

Aziz, S., & Dowling, M. (2019). Machine learning and AI for risk management. Disrupting finance: FinTech and strategy in the 21st century, 33–50. AzizS. DowlingM. 2019 Machine learning and AI for risk management Disrupting finance: FinTech and strategy in the 21st century 33 50 Search in Google Scholar

Basel Committee. (1996). Overview of the Amendment to the Capital Accord to Incorporate Market Risks. Discussion Paper, Basel Committee on Banking Supervision. Basel Committee 1996 Overview of the Amendment to the Capital Accord to Incorporate Market Risks Discussion Paper, Basel Committee on Banking Supervision. Search in Google Scholar

Bayer, S. (2018). Combining value-at-risk forecasts using penalized quantile regressions. Econometrics and statistics, 8, 56–77. https://doi.org/10.1016/j.ecosta.2017.08.001 BayerS. 2018 Combining value-at-risk forecasts using penalized quantile regressions Econometrics and statistics 8 56 77 https://doi.org/10.1016/j.ecosta.2017.08.001 Search in Google Scholar

BCBS (1996). Supervisory Framework for the Use of ‘Backtesting’ in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. BCBS 1996 Supervisory Framework for the Use of ‘Backtesting’ in Conjunction with the Internal Models Approach to Market Risk Capital Requirements Search in Google Scholar

BCBS (2010). The Basel III Capital Framework: A Decisive Breakthrough. Speech by Hervé Hannoun at BoJ-BIS High Level Seminar on Financial Regulatory Reform: Implications for Asia and the Pacific, Hong Kong SAR. BCBS 2010 The Basel III Capital Framework: A Decisive Breakthrough. Speech by Hervé Hannoun at BoJ-BIS High Level Seminar on Financial Regulatory Reform: Implications for Asia and the Pacific, Hong Kong SAR Search in Google Scholar

Bernardi, M., Catania, L. (2016). Comparison of Value-at-Risk models using the MCS approach. Computational Statistics, 31(2), 579–608. https://doi.org/10.1007/s00180-016-0646-6 BernardiM. CataniaL. 2016 Comparison of Value-at-Risk models using the MCS approach Computational Statistics 31 2 579 608 https://doi.org/10.1007/s00180-016-0646-6 Search in Google Scholar

Bhowmik, R., & Wang, S. (2020). Stock market volatility and return analysis: A systematic literature review. Entropy, 22(5), 522. https://doi.org/10.3390/e22050522 BhowmikR. WangS. 2020 Stock market volatility and return analysis: A systematic literature review Entropy 22 5 522 https://doi.org/10.3390/e22050522 Search in Google Scholar

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics. 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 BollerslevT. 1986 Generalized autoregressive conditional heteroscedasticity Journal of Econometrics 31 3 307 327 https://doi.org/10.1016/0304-4076(86)90063-1 Search in Google Scholar

Bollerslev, T. (1987). Conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3), 542–547. https://doi.org/10.2307/1925546 BollerslevT. 1987 Conditionally heteroskedastic time series model for speculative prices and rates of return The Review of Economics and Statistics 69 3 542 547 https://doi.org/10.2307/1925546 Search in Google Scholar

Bollerslev, T., Woolridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances Econometric Reviews 11. https://doi.org/10.1080/07474939208800229 BollerslevT. WoolridgeJ. M. 1992 Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances Econometric Reviews 11 https://doi.org/10.1080/07474939208800229 Search in Google Scholar

Buczyński, M., Chlebus, M. (2018). Comparison of semi-parametric and benchmark value-at-risk models in several time periods with different volatility levels. e-Finanse: Financial Internet Quarterly, 14(2), 67–82. https://doi.org/10.2478/fiqf-2018-0013 BuczyńskiM. ChlebusM. 2018 Comparison of semi-parametric and benchmark value-at-risk models in several time periods with different volatility levels e-Finanse: Financial Internet Quarterly 14 2 67 82 https://doi.org/10.2478/fiqf-2018-0013 Search in Google Scholar

Buczyński, M., & Chlebus, M. (2019). Old-fashioned parametric models are still the best: a comparison of value-at-risk approaches in several volatility states. Journal of Risk Model Validation, 14(2). BuczyńskiM. ChlebusM. 2019 Old-fashioned parametric models are still the best: a comparison of value-at-risk approaches in several volatility states Journal of Risk Model Validation 14 2 Search in Google Scholar

Caillault, É. P., Lefebvre, A., and Bigand, A. (2017). Dynamic time warping-based imputation for univariate time series data. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2017.08.019 CaillaultÉ. P. LefebvreA. BigandA. 2017 Dynamic time warping-based imputation for univariate time series data Pattern Recognition Letters https://doi.org/10.1016/j.patrec.2017.08.019 Search in Google Scholar

Cannon, A. J. (2010). A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes: An International Journal, 24(6), 673–685. https://doi.org/10.1002/hyp.7506 CannonA. J. 2010 A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology Hydrological Processes: An International Journal 24 6 673 685 https://doi.org/10.1002/hyp.7506 Search in Google Scholar

Cannon, A. J. (2011). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & Geosciences, 37(9), 1277–1284. https://doi.org/10.1016/j.cageo.2010.07.005 CannonA. J. 2011 Quantile regression neural networks: Implementation in R and application to precipitation downscaling Computers & Geosciences 37 9 1277 1284 https://doi.org/10.1016/j.cageo.2010.07.005 Search in Google Scholar

Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862. https://doi.org/10.2307/2527341 ChristoffersenP. 1998 Evaluating interval forecasts International Economic Review 39 4 841 862 https://doi.org/10.2307/2527341 Search in Google Scholar

Clemen, R. T., Winkler, R. L. (1986). Combining economic forecasts. Journal of Business & Economic Statistics, 4(1), 39–46. https://doi.org/10.2307/1391385 ClemenR. T. WinklerR. L. 1986 Combining economic forecasts Journal of Business & Economic Statistics 4 1 39 46 https://doi.org/10.2307/1391385 Search in Google Scholar

Danielsson, J. (2013). The new market-risk regulations. VoxEU. DanielssonJ. 2013 The new market-risk regulations VoxEU Search in Google Scholar

Danielsson, J., Morimoto, Y. (2000). Forecasting extreme financial risk: A critical analysis of practical methods for the Japanese market. Institute for Monetary and Economic Studies, Bank of Japan. DanielssonJ. MorimotoY. 2000 Forecasting extreme financial risk: A critical analysis of practical methods for the Japanese market Institute for Monetary and Economic Studies Bank of Japan Search in Google Scholar

Dudziński, J. (2016). Ceny w handlu międzynarodowym w drugiej dekadzie XXI wieku. Kierunki zmian i ich czynniki. International Business and Global Economy, 35(2), 249–260. https://doi.org/10.4467/23539496IB.16.061.5642 DudzińskiJ. 2016 Ceny w handlu międzynarodowym w drugiej dekadzie XXI wieku. Kierunki zmian i ich czynniki International Business and Global Economy 35 2 249 260 https://doi.org/10.4467/23539496IB.16.061.5642 Search in Google Scholar

Duffie, D., Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4(3), 7–49. http://doi.org/10.3905/jod.1997.407971 DuffieD. PanJ. 1997 An overview of value at risk Journal of Derivatives 4 3 7 49 http://doi.org/10.3905/jod.1997.407971 Search in Google Scholar

Engle, R. F., Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22(4), 367–381. http://doi.org/10.1198/073500104000000370 EngleR. F. ManganelliS. 2004 CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles Journal of Business & Economic Statistics 22 4 367 381 http://doi.org/10.1198/073500104000000370 Search in Google Scholar

Fameliti, S. P., & Skintzi, V. D. (2020). Predictive ability and economic gains from volatility forecast combinations. Journal of Forecasting, 39(2), 200–219. http://doi.org/10.1002/for.2622 FamelitiS. P. SkintziV. D. 2020 Predictive ability and economic gains from volatility forecast combinations Journal of Forecasting 39 2 200 219 http://doi.org/10.1002/for.2622 Search in Google Scholar

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232. http://dx.doi.org/10.1214/aos/1013203451 FriedmanJ. H. 2001 Greedy function approximation: a gradient boosting machine Annals of Statistics 1189 1232 http://dx.doi.org/10.1214/aos/1013203451 Search in Google Scholar

Gençay, R., Selçuk, F., Ulugülyaǧci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33(2), 337–356. http://dx.doi.org/10.1016/j.insmatheco.2003.07.004 GençayR. SelçukF. UlugülyaǧciA. 2003 High volatility, thick tails and extreme value theory in value-at-risk estimation Insurance: Mathematics and Economics 33 2 337 356 http://dx.doi.org/10.1016/j.insmatheco.2003.07.004 Search in Google Scholar

Giacomini, R., Komunjer, I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business and Economic Statistics, 23(4), 416–431. http://doi.org/10.1198/073500105000000018 GiacominiR. KomunjerI. 2005 Evaluation and combination of conditional quantile forecasts Journal of Business and Economic Statistics 23 4 416 431 http://doi.org/10.1198/073500105000000018 Search in Google Scholar

Grömping, U. (2009). Variable importance assessment in regression: linear regression versus random forest. The American Statistician, 63(4), 308–319. https://doi.org/10.1198/tast.2009.08199 GrömpingU. 2009 Variable importance assessment in regression: linear regression versus random forest The American Statistician 63 4 308 319 https://doi.org/10.1198/tast.2009.08199 Search in Google Scholar

Halbleib, R., Pohlmeier, W. (2012). Improving the value at risk forecasts: Theory and evidence from the financial crisis. Journal of Economic Dynamics and Control, 36(8), 1212–1228. https://doi.org/10.1016/j.jedc.2011.10.005 HalbleibR. PohlmeierW. 2012 Improving the value at risk forecasts: Theory and evidence from the financial crisis Journal of Economic Dynamics and Control 36 8 1212 1228 https://doi.org/10.1016/j.jedc.2011.10.005 Search in Google Scholar

Hansen, P. R., Lunde, A., Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497. https://doi.org/10.3982/ECTA5771 HansenP. R. LundeA. NasonJ. M. 2011 The model confidence set Econometrica 79 2 453 497 https://doi.org/10.3982/ECTA5771 Search in Google Scholar

Holthausen, D. M., Hughes, J. S. (1978). Commodity returns and capital asset pricing. Financial Management, 37–44. https://doi.org/10.1177/0972262912460186 HolthausenD. M. HughesJ. S. 1978 Commodity returns and capital asset pricing Financial Management 37 44 https://doi.org/10.1177/0972262912460186 Search in Google Scholar

Huang, H., Lee, T. H. (2013). Forecasting value-at-risk using high-frequency information. Econometrics, 1(1), 127–140. https://doi.org/10.3390/econometrics1010127 HuangH. LeeT. H. 2013 Forecasting value-at-risk using high-frequency information Econometrics 1 1 127 140 https://doi.org/10.3390/econometrics1010127 Search in Google Scholar

Ichev, R., Marinč, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153–166. https://doi.org/10.1016/j.irfa.2017.12.004 IchevR. MarinčM. 2018 Stock prices and geographic proximity of information: Evidence from the Ebola outbreak International Review of Financial Analysis 56 153 166 https://doi.org/10.1016/j.irfa.2017.12.004 Search in Google Scholar

Jeon, J., Taylor, J. W. (2013). Using CAViaR models with implied volatility for Value-at-Risk estimation. Journal of Forecasting, 32(1), 62–74. http://dx.doi.org/10.1002/for.1251 JeonJ. TaylorJ. W. 2013 Using CAViaR models with implied volatility for Value-at-Risk estimation Journal of Forecasting 32 1 62 74 http://dx.doi.org/10.1002/for.1251 Search in Google Scholar

Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models. Journal of Derivatives, 3 (2), 73–84. https://doi.org/10.3905/jod.1995.407942 KupiecP. 1995 Techniques for verifying the accuracy of risk management models Journal of Derivatives 3 2 73 84 https://doi.org/10.3905/jod.1995.407942 Search in Google Scholar

Laporta, A. G., Merlo, L., & Petrella, L. (2018). Selection of value at risk models for energy commodities. Energy Economics 74, 628–643. LaportaA. G. MerloL. PetrellaL. 2018 Selection of value at risk models for energy commodities Energy Economics 74 628 643 Search in Google Scholar

Laurent, S., Rombouts, J. V., & Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934–955. https://doi.org/10.1002/jae.1248 LaurentS. RomboutsJ. V. ViolanteF. 2012 On the forecasting accuracy of multivariate GARCH models Journal of Applied Econometrics 27 6 934 955 https://doi.org/10.1002/jae.1248 Search in Google Scholar

Lyócsa, Š., Todorova, N., & Výrost, T. (2021). Predicting risk in energy markets: low-frequency data still matter. Applied Energy, 282, 116–146. LyócsaŠ. TodorovaN. VýrostT. 2021 Predicting risk in energy markets: low-frequency data still matter Applied Energy 282 116 146 Search in Google Scholar

Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine learning for financial risk management: a survey. IEEE Access, 8, 203203–203223. MashrurA. LuoW. ZaidiN. A. Robles-KellyA. 2020 Machine learning for financial risk management: a survey IEEE Access 8 203203 203223 Search in Google Scholar

McAleer, M., Jimenez-Martin, J. A., Perez Amaral, T. (2010). Has the Basel II Accord encouraged risk management during the 2008–09 financial crisis? SSRN Electronic Journal, http://dx.doi.org/10.2139/ssrn.1397239 McAleerM. Jimenez-MartinJ. A. Perez AmaralT. 2010 Has the Basel II Accord encouraged risk management during the 2008–09 financial crisis? SSRN Electronic Journal http://dx.doi.org/10.2139/ssrn.1397239 Search in Google Scholar

Meinshausen, N., Ridgeway, G. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(6). MeinshausenN. RidgewayG. 2006 Quantile regression forests Journal of Machine Learning Research 7 6 Search in Google Scholar

Mensi, W., Sensoy, A., Vo, X. V., Kang, S. H. (2020). Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices. Resources Policy, 69, 101829. https://doi.org/10.1016%2Fj.resourpol.2020.101829 MensiW. SensoyA. VoX. V. KangS. H. 2020 Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices Resources Policy 69 101829 https://doi.org/10.1016%2Fj.resourpol.2020.101829 Search in Google Scholar

Phillips, P. C., Yu, J. (2011). Dating the timeline of financial bubbles during the subprime crisis. Quantitative Economics, 2(3), 455–491. http://dx.doi.org/10.3982/QE82 PhillipsP. C. YuJ. 2011 Dating the timeline of financial bubbles during the subprime crisis Quantitative Economics 2 3 455 491 http://dx.doi.org/10.3982/QE82 Search in Google Scholar

Parot, A., Michell, K., & Kristjanpoller, W. D. (2019). Using Artificial Neural Networks to forecast Exchange Rate, including VAR-VECM residual analysis and prediction linear combination. Intelligent Systems in Accounting, Finance and Management, 26(1), 3–15. https://doi.org/10.1002/isaf.1440 ParotA. MichellK. KristjanpollerW. D. 2019 Using Artificial Neural Networks to forecast Exchange Rate, including VAR-VECM residual analysis and prediction linear combination Intelligent Systems in Accounting, Finance and Management 26 1 3 15 https://doi.org/10.1002/isaf.1440 Search in Google Scholar

Pradeepkumar, D., & Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimisation trained quantile regression neural network. Applied Soft Computing, 58, 35–52. https://doi.org/10.1016/j.asoc.2017.04.014 PradeepkumarD. RaviV. 2017 Forecasting financial time series volatility using particle swarm optimisation trained quantile regression neural network Applied Soft Computing 58 35 52 https://doi.org/10.1016/j.asoc.2017.04.014 Search in Google Scholar

Rundo, F., Trenta, F., di Stallo, A. L., & Battiato, S. (2019). Machine learning for quantitative finance applications: A survey. Applied Sciences, 9(24), 5574. RundoF. TrentaF. di StalloA. L. BattiatoS. 2019 Machine learning for quantitative finance applications: A survey Applied Sciences 9 24 5574 Search in Google Scholar

Stuermer, M., & Valckx, N. (2021). Four Factors Behind the Metals Price Rally. IMF. StuermerM. ValckxN. 2021 Four Factors Behind the Metals Price Rally IMF Search in Google Scholar

Szakmary, A. C., Shen, Q., Sharma, S. C. (2010). Trend-following trading strategies in commodity futures: A re-examination. Journal of Banking & Finance, 34(2), 409–426. http://dx.doi.org/10.1016/j.jbankfin.2009.08.004 SzakmaryA. C. ShenQ. SharmaS. C. 2010 Trend-following trading strategies in commodity futures: A re-examination Journal of Banking & Finance 34 2 409 426 http://dx.doi.org/10.1016/j.jbankfin.2009.08.004 Search in Google Scholar

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x TibshiraniR. 1996 Regression shrinkage and selection via the LASSO Journal of the Royal Statistical Society: Series B (Methodological) 58 1 267 288 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x Search in Google Scholar

Taylor, J. W. (2020). Forecast combinations for value at risk and expected shortfall. International Journal of Forecasting, 36(2), 428–441. https://doi.org/10.1016/j.ijforecast.2019.05.014 TaylorJ. W. 2020 Forecast combinations for value at risk and expected shortfall International Journal of Forecasting 36 2 428 441 https://doi.org/10.1016/j.ijforecast.2019.05.014 Search in Google Scholar

Terui, N., Van Dijk, H. K. (2002). Combined forecasts from linear and nonlinear time series models. International Journal of Forecasting, 18(3), 421–438. https://doi.org/10.1016/S0169-2070(01)00120-0 TeruiN. Van DijkH. K. 2002 Combined forecasts from linear and nonlinear time series models International Journal of Forecasting 18 3 421 438 https://doi.org/10.1016/S0169-2070(01)00120-0 Search in Google Scholar

Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1, 135–196. https://doi.org/10.1016/S1574-0706(05)01004-9 TimmermannA. 2006 Forecast combinations Handbook of economic forecasting 1 135 196 https://doi.org/10.1016/S1574-0706(05)01004-9 Search in Google Scholar

Tsay, R. S. (2005). Analysis of Financial Time Series (Vol. 543). John Wiley & Sons. TsayR. S. 2005 Analysis of Financial Time Series 543 John Wiley & Sons Search in Google Scholar

Tse, Y. (2016). Asymmetric volatility, skewness, and downside risk in different asset classes: Evidence from futures markets. Financial Review, 51(1), 83–111. https://doi.org/10.1111/fire.12095 TseY. 2016 Asymmetric volatility, skewness, and downside risk in different asset classes: Evidence from futures markets Financial Review 51 1 83 111 https://doi.org/10.1111/fire.12095 Search in Google Scholar

Wasserbacher, H., & Spindler, M. (2022). Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls. Digital Finance, 4(1), 63–88. WasserbacherH. SpindlerM. 2022 Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls Digital Finance 4 1 63 88 Search in Google Scholar

Xiao, D., Su, J., & Ayub, B. (2022). Economic policy uncertainty and commodity market volatility: implications for economic recovery. Environmental Science and Pollution Research, 29(40), 60662–60673. XiaoD. SuJ. AyubB. 2022 Economic policy uncertainty and commodity market volatility: implications for economic recovery Environmental Science and Pollution Research 29 40 60662 60673 Search in Google Scholar

Youssef, M., Belkacem, L., Mokni, K., 2015. Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. Energy Economics, 51, 99–110. https://doi.org/10.1016/j.eneco.2015.06.010 YoussefM. BelkacemL. MokniK. 2015 Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach Energy Economics 51 99 110 https://doi.org/10.1016/j.eneco.2015.06.010 Search in Google Scholar

eISSN:
2543-6821
Idioma:
Inglés