This work is licensed under the Creative Commons Attribution 4.0 International License.
KADHIM, F. J. - ABED, M. S. - ALMUSAWI, J. K.: Feasibility of strengthening sandy soils using industry waste as geo-fiber, Civil and Environmental Engineering, Vol. 19, Issue 2, 649-661, DOI: 10.2478/cee-2023-0059.Search in Google Scholar
RÚHIG, R. - RÚHIGOVÁ, E.: Effect of glazed loggias on the energy efficiency of a T08b prefabricated dwelling – a case study, Slovak Journal of Civil Engineering, Vol. 29, 2021, No. 3, 41 – 50, DOI: 10.2478/sjce-2021-0020.Search in Google Scholar
LALOUI, L. - ROTTA LORIA, A. F.: Analysis and Design of Energy Geostructures. Academic Press, 2020, 1096 p., ISBN 978-0-12-820623-2.Search in Google Scholar
ADAM, D. - BRUNNER, A. - MARKIEWICZ, R. - PISTROL, J.: Long-term experience of the thermo-active ground source system at the metro station Taborstrasse in Vienna, Acta Polytechnica CTU Proceedings, Volume 45, 2023, 13 p.Search in Google Scholar
HOSEINIMIGHANI, H. - SZENDEFY, J.: Comparison of different methods for measuring thermal properties of soil: review on laboratory, in-situ and numerical modelling methods, Energy, 2021, Volume 27, 31 p.Search in Google Scholar
DURMEKOVÁ, T. - WAGNER, P. - FRANKOVSKÁ, J.: Properties of rocks and their determination in the laboratory. 1. Rocks. Comenius University in Bratislava (Vlastnosti hornín a ich stanovenie v laboratóriu. 1. Skalné horniny. Univerzita Komenského v Bratislave), 2013, 173 p., ISBN 978-80-223-3330-6.Search in Google Scholar
SIA D 0190: Use of geothermal energy with foundation piles and other concrete components in contact with the earth - Guide to planning, construction and operation, SIA Zurich. (Nutzung der Erdwärme mit Fundationspfählen und anderen erdberührenden Betonbauteilen - Leitfaden zu Planung, Bau und Betrieb, SIA Zurich.), 2005, 101 p.Search in Google Scholar
HARIDY, S. - ALNAGBI, K. - RADWAN, A. - ARAB, G. M.: Optimizing the thermal performance of energy piles using response surface methodology, Case Studies in Thermal Engineering, 2023, Volume 41, 102637.Search in Google Scholar
STN 73 0540-2+Z1+Z2: Thermal protection of buildings. Thermal technical properties of construction structures and buildings. Part 2: Functional requirements. Consolidated wording. (Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Časť 2: Funkčné požiadavky. Konsolidované znenie.), 2019, 36 p.Search in Google Scholar
HANSEN, S. - JENSEN, H. E. - NIELSEN, N. E. - SVENDSEN, H.: Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fertilizer Research, 1991, Volume 27, pp. 245-259.Search in Google Scholar
SLAVKOV, J.: Thermal conductivity of soil in different climatic conditions. (Tepelná vodivosť horninového prostredia v rôznych klimatických podmienkach), Proceedings of the 15th Slovak Geotechnical Conference, Spektrum STU, 2023, pp. 370-378.Search in Google Scholar
BOUAZZA, A. - MANESSERO, M. - WANG, B. - DOMINIJANNI, A. - SINGH, R. M. - FORTI, S. - CEVRO, S. - MUSSO, G.: Soil effective thermal conductivity from energy pile thermal tests, Coupled Phenomena in Environmental Geotechnics: Proceedings of the International Symposium, Torino, Italy, 1–3 July 2013, Taylor & Francis, London, pp. 211–219.Search in Google Scholar
prEN 1997-2: Eurocode 7. Part 2. Geotechnical design - Ground properties, 2022, 148 p.Search in Google Scholar
ÖZKAHRAMAN, H. T. - SELVER, R. - IŞIK, E. C.: Determination of Thermal Conductivity of rock from P-wave velocity, International Journal of Rock Mechanics and Mining Sciences, 2004, Volume 41, pp. 703-708.Search in Google Scholar
INCROPERA, F. P. - DEWITT, D. P.: Fundamentals of Heat and Mass Transfer, 3rd Edition, Wiley, 1990, 992 pages.Search in Google Scholar
RAO, S. - HU, S. - ZHU, C. - TANG, X. - LI, W. - WANG, J.: The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China, Chinese Journal of Geophysics, 2013, Volume 56, pp. 2760-2770.Search in Google Scholar
ZHANG, N. - WANG, Z.: Review of soil thermal conductivity and predictive models, International Journal of Thermal Sciences, 2017, Volume 117, pp. 172-183.Search in Google Scholar
TOAN, C. - KUMAR, S. - VAHEDIFARD, F. - AMIRLATIFI, A.: General Thermal Conductivity Function for Unsaturated Soils Considering Effects of Water Content, Temperature, and Confining Pressure, Journal of Geotechnical and Geoenvironmental Engineering, 2021, Volume 147, 18 p.Search in Google Scholar
BRANDON, T. L. - MITCHELL, J. K.: Factors influencing thermal resistivity of sands, Journal Geotechnical Engineering, 1989, Volume 115, No 12, pp. 1683–1698.Search in Google Scholar
YUN, T. S. - SANTAMARINA, J. C.: Fundamental study of thermal conduction in dry soils, Granular Matter, 2008, Volume 10, pp. 197-207.Search in Google Scholar
CHEN, S. X.: Thermal conductivity of sands, Heat Mass Transfer, 2008, Volume 44, pp. 1241–1246.Search in Google Scholar
VARGAS, W. L. - MCCARTHY, J. J.: Heat conduction in granular materials, American Institute of Chemical Engineers Journal, 2001, Volume 47, pp. 1052–1059.Search in Google Scholar
ZHANG, T. - CAI, G. - LIU, S. - PUPPALA, A. J.: Investigation on thermal characteristics and prediction models of soils, International Journal of Heat Mass Transfer, 2017, Volume 106, pp.1074–1086.Search in Google Scholar
MOHYLA, M. - HRUBESOVA, E. - MARTINKAUPPI, B. - MÄKIRANTA, A. - TUOMI, V.: Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland, Renewable Energy, 221, 119770, 2024.Search in Google Scholar
JOHANSEN, O.: Thermal conductivity of soils, Ph.D. dissertation, Defense Technical Information Center, Norwegian University of Science and Technology, 1977, 322 p.Search in Google Scholar
XU, Y. - SUN, D. - ZENG, Z. - LV, H.: Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range, International Journal of Heat and Mass Transfer, 2019, Volume 138, pp. 562-570, ISSN 0017-9310.Search in Google Scholar
LU, S. - REN, T.: Model for predicting soil thermal conductivity at various temperatures, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2009, Volume 25, pp. 13-18.Search in Google Scholar
HIRAIWA, Y. - KASUBUCHI, T.: Temperature dependence of soil thermal conductivity over a wide range of temperature (5–75°C), European Journal of Soil Science, 2000, Volume 51, pp. 211–218.Search in Google Scholar
LIU, C. H. - ZHOU, D. - WU, H.: Measurement and prediction of temperature effects of thermal conductivity of soils, Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2011, Volume 33, pp. 1877–1886.Search in Google Scholar
SMITS, K. M. - SAKAKI, T. - HOWINGTON, S. E. - PETERS, J. F. - ILLANGASEKARE, T. H.: Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70 °C), Vadose Zone Journal, 2013, Volume 12, pp. 2256–2265.Search in Google Scholar
KUČOVÁ, E. - FRANKOVSKÁ, J.: The angle of the shear resistance of Danube gravel derived from the dynamic penetration test, Slovak Journal of Civil Engineering, 2023, 31. pp. 38-46.Search in Google Scholar
VASS, D. - BEGAN, A. - GROSS, P. - KAHAN, Š. - KÖHLER, E. - KRYSTEK, I. - LEXA, J. - NEMČOK, J.: Regional geological division of the Western Carpathians and the northern reaches of the Pannonian Basin on the territory of the Czechoslovak Socialist Republic (M 1:500 000), Geologický ústav Dionýza Štúra, Bratislava, 1988.Search in Google Scholar
ANDUJAR MARQUEZ, J. - BOHÓRQUEZ, M. A. - MELGAR, S.: Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems, Sensors, 2016, 13 p.Search in Google Scholar
SMITS, K. M. - SAKAKI, T. - LIMSUWAT, A. - ILLANGASEKARE, H. T.: Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles, Vadose Zone Journal, 2010, Volume 9, pp. 1–9.Search in Google Scholar
AYAZ, H. - FAIZAL, M. - BOUAZZA, A.: Energy, economic, and carbon emission analysis of a residential building with an energy pile system, Renewable Energy, 220, 119712, 2024.Search in Google Scholar