Cite

[1] DIAMANTI, N. - REDMAN, J. D. - ANNAN, A. P.: A GPR-based Sensor to Measure Asphalt Pavement Density. 17th International Conference on Ground Penetrating Radar, 2018, pp. 1–6, doi: 10.1109/ICGPR.2018.8441669. Open DOISearch in Google Scholar

[2] HUFF, R. - BERTHELOT, C. - DAKU, B.: Continuous primary dynamic pavement response system using piezoelectric axle sensors. Can. J. Civ. Eng., Vol. 32, No. 1, 2005, pp. 260–269, doi: 10.1139/l04-087. Open DOISearch in Google Scholar

[3] LAJNEF, N. - CHATTI, K. - CHAKRABARTTY, S. - RHIMI, M. - SARKAR, P.: Smart Pavement Monitoring System. Rep. FHWA-HRT-12-072, No. May, 2013, p. 132, http://trid.trb.org/view.aspx?id=1251704. Search in Google Scholar

[4] IMMANUEL SELVARAJ, S.: Review on the Use of Instrumented Pavement Test Data in Validating Flexible Pavement Mechanistic Load Response Models. Procedia-Social Behav. Sci., Vol. 43, 2012, pp. 819–831, doi: 10.1016/j.sbspro.2012.04.157. Open DOISearch in Google Scholar

[5] SUN, L. - ZHAO, H. - TU, H. - TIAN, Y.: The Smart Road: Practice and Concept. Engineering, Vol. 4, No. 4, 2018, pp. 436–437, doi: 10.1016/j.eng.2018.07.014. Open DOISearch in Google Scholar

[6] A Practical Approach to Vibration Detection and Measurement, Part 1: Physical Principles and Detection Techniques Fierce Electronics. https://www.fierceelectronics.com/components/a-practical-approach-to-vibration-detection-and-measurement-part-1-physical-principles. Search in Google Scholar

[7] XUE, W. - WANG, D. - WANG, L.: A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol., Vol. 5, No. 5, 2012, pp. 295–302. Search in Google Scholar

[8] RABE, R.: Measuring pavement response – Design, development and application of sensors and data evaluation for test and in-service pavements. Proceedings of the international conferences on the bearing capacity of roads, railways and airfields, Vol. 1, 2013, 10 p., https://www.ntnu.no/ojs/index.php/BCRRA/article/view/2651. Search in Google Scholar

[9] FRADEN, J.: Handbook of Modern Sensors: Physics, Designs and Applications. Fifth edition, Springer Cham, 2016, 758 p.10.1007/978-3-319-19303-8 Search in Google Scholar

[10] REPORT, F.: Instrumentation for Flexible Pavements: Field Performance of Selected Sensors.  : Final Report, Vol. I., Pennsylvania Transportation Institute, 1991, 205 p. Search in Google Scholar

[11] SEBAALY, P. E. - TABATABAEE, N. - KULAKOWSKI, B.: Evaluation of the hall effect sensor for pavement instrumentation. J. Test. Eval., Vol. 23, No. 3, 1995, pp. 189–195, doi: 10.1520/jte104 09j. Open DOISearch in Google Scholar

[12] XUE, W. - WEAVER, E.: Pavement shear strain response to dual and wide-base tires. Transp. Res. Rec., No. 2225, 2011, pp. 155–164, doi: 10.3141/2225-17. Open DOISearch in Google Scholar

[13] KARA DE MAEIJER, P. et al.: Fiber optics sensors in asphalt pavement: State-of-the-art review. Infrastructures, Vol. 4, No. 2, 2019, pp. 1–16, doi: 10.3390/infrastructures4020036. Open DOISearch in Google Scholar

[14] RAJIBUL ISLAM, M. - MAHMOOD ALI, M. - LAI, M. H. - LIM, K. S. - AHMAD, H.: Chronology of fabry-perot interferometer fiber-optic sensors and their applications: A review. Sensors, Vol. 14, No. 4, 2014, pp. 7451–7488, doi: 10.3390/s140407451. Open DOISearch in Google Scholar

[15] CAMPANELLA, C. E. - CUCCOVILLO, A. - CAMPANELLA, C. - YURT, A. - PASSARO, V. M. N.: Fibre Bragg Grating based strain sensors: Review of technology and applications. Sensors, Vol. 18, No. 9, 2018, 27 p., doi: 10.3390/s18093115. Open DOISearch in Google Scholar

[16] BAO, X. - CHEN, L.: Recent Progress in Distributed Fiber Optic Sensors. Sensors, Vol. 12, No. 7, 2012, pp. 8601–8639, doi: 10.3390/s120708601. Open DOISearch in Google Scholar

[17] SHIEH, J. - HUBER, J. E. - FLECK, N. A. - ASHBY, M. F.: The selection of sensors. Progress in Materials Science, Vol. 46, No. 3–4, 2001, pp. 461–504, doi: 10.1016/S0079-6425(00)00011-6. Open DOISearch in Google Scholar

[18] VENKATANARAYANAN, A. - SPAIN, E.: Review of Recent Developments in Sensing Materials. Comprehensive Materials Processing, Vol. 13, 2014, pp. 47-101, doi: 10.1016/B978-0-08-0965 32-1.01303-0. Open DOISearch in Google Scholar

[19] YODER, N. C. - ADAMS, D. E.: 3 - Commonly used sensors for civil infrastructures and their associated algorithms. Sensor Technologies for Civil Infrastructures, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment, Woodhead Publishing, 2014, pp. 57-85, doi: 10.1533/9780857099136.57. Open DOISearch in Google Scholar

[20] XIE, H. - FEDDER, G. K. - SULOUFF, R. E.: Accelerometers. Compr. Microsystems, Vol. 2, 2007, pp. 135–180, doi: 10.1016/B978-044452190-3.00053-7. Open DOISearch in Google Scholar

[21] HOWELLS, C. A.: Piezoelectric energy harvesting. Energy Convers. Manag., Vol. 50, No. 7, 2009, pp. 1847–1850, doi: 10.1016/j.enconman.2009.02.020. Open DOISearch in Google Scholar

[22] LIU, Q. et al.: Wireless Single-Electrode Self-Powered Piezoelectric Sensor for Monitoring. ACS Appl. Mater. Interfaces, Vol. 12, No. 7, 2020, pp. 8288–8295, doi: 10.1021/acsami.9b21392. Open DOISearch in Google Scholar

[23] XIAO, J. - ZOU, X. - XU, W.: ePave: A self-powered wireless sensor for smart and autonomous pavement. Sensors, Vol. 17, No. 10, 2017, doi: 10.3390/s17102207. Open DOISearch in Google Scholar

[24] MEO, M.: 6 - Acoustic emission sensors for assessing and monitoring civil infrastructures. Sensor Technologies for Civil Infrastructures, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment, Woodhead Publishing, 2014, pp. 159-178, doi: 10.1533/97808570 99136.159. Open DOISearch in Google Scholar

[25] PRATICÒ, F. G. - FEDELE, R. - NAUMOV, V. - SAUER, T.: Detection and monitoring of bottom-up cracks in road pavement using a machine-learning approach. Algorithms, Vol. 13, No. 4, 2020, pp. 1–16, doi: 10.3390/a13040081. Open DOISearch in Google Scholar

[26] NGUYEN, S. T. - TO, Q. D. - VU, M. N.: Extended analytical solutions for effective elastic moduli of cracked porous media. J. Appl. Geophys., Vol. 140, 2017, pp. 34–41, doi: 10.1016/j.jappgeo. 2017.03.007. Open DOISearch in Google Scholar

[27] CAFISO, S. - DI GRAZIANO, A. - FEDELE, R. - MARCHETTA, V. - PRATICÒ, F.: Sensor-based pavement diagnostic using acoustic signature for moduli estimation. Int. J. Pavement Res. Technol., Vol. 13, No. 6, 2020, pp. 573–580, doi: 10.1007/s42947-020-6007-4. Open DOISearch in Google Scholar

[28] FEDELE, R. - PRATICO, F. G. - CAROTENUTO, R. - GIUSEPPE DELLA CORTE, F.: Instrumented infrastructures for damage detection and management. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, 2017, pp. 526–531, doi: 10.1109/MTITS.2017.8005729. Open DOISearch in Google Scholar

[29] BARRIERA, M. - POUGET, S. - LEBENTAL, B. - VAN ROMPU, J.: In situ pavement monitoring: A review. Infrastructures, Vol. 5, No. 2, 2020, 19 p., doi: 10.3390/infrastructures5020018. Open DOISearch in Google Scholar

[30] JOSHI, S.: Linear Variable Differential Transducer (LVDT) & Its Applications in Civil Engineering. Int. J. Transp. Eng. Technol., Vol. 3, No. 4, 2017, p. 62, doi: 10.11648/j.ijtet.20170304.13. Open DOISearch in Google Scholar

[31] DE SILVA, C. W.: Control sensors and actuators. Prentice Hall, Englewood Cliffs, N.J., 1989, 436 p., https://www.worldcat.org/title/control-sensors-and-actuators/oclc/18559216. Search in Google Scholar

[32] LIU, P. - OTTO, F. - WANG, D. - OESER, M. - BALCK, H.: Measurement and evaluation on deterioration of asphalt pavements by geophones. Meas. J. Int. Meas. Confed., Vol. 109, 2017, pp. 223–232, doi: 10.1016/j.measurement.2017.05.066. Open DOISearch in Google Scholar

[33] DI BENEDETTO, H. - SAUZÉAT, C. - DELAPORTE, B. - OLARD, F.: Linear viscoelastic behaviour of bituminous materials: From binders to mixes. Road Mater. Pavement Des., Vol. 5, No. 2014, 2004, pp. 163–202, doi: 10.1080/14680629.2004.9689992. Open DOISearch in Google Scholar

[34] SANGIORGI, C. - SETTIMI, C. - TATARANNI, P. - LANTIERI, C. - ADOMAKO, S.: Thermal Analysis of Asphalt Concrete Pavements Heated with Amorphous Metal Technology. Adv. Mater. Sci. Eng., Vol. 2018, 2018, pp. 1-8, doi: 10.1155/2018/6382874. Open DOISearch in Google Scholar

[35] TROIANO, A. - PASERO, E. - MESIN, L.: An innovative water and ice detection system for monitoring road and runway surfaces. 6th Conference on Ph.D. Research in Microelectronics & Electronics, 2010, pp. 1-4, https://ieeexplore.ieee.org/document/5587181. Search in Google Scholar

[36] FREDLUND, D. G. - RAHARDJO, H. - FREDLUND, M. D.: Unsaturated Soil Mechanics in Engineering Practice. Willey, 2012, 944 p.10.1002/9781118280492 Search in Google Scholar

[37] SALOUR, F. - ERLINGSSON, S.: Investigation of a pavement structural behaviour during spring thaw using falling weight deflectometer. Road Mater. Pavement Des., Vol. 14, No. 1, 2013, pp. 141–158, doi: 10.1080/14680629.2012.754600. Open DOISearch in Google Scholar

[38] DI GRAZIANO, A. - MARCHETTA, V. - CAFISO, S.: Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. J. Traffic Transp. Eng., Vol. 7, No. 5, 2020, pp. 639–651, doi: 10.1016/j.jtte.2020.08.001. Open DOISearch in Google Scholar

[39] XUE, W. - WANG, L. - WANG, D. - DRUTA, C.: Pavement Health Monitoring System Based on an Embedded Sensing Network. J. Mater. Civ. Eng., Vol. 26, No. 10, 2014, doi: 10.1061/(asce)mt.1943-5533.0000976. Open DOISearch in Google Scholar

[40] KHAMLICHI, Y. EL. - TAHIRI, A. - ABTOY, A. - MEDINA-BULO, I. - PALOMO-LOZANO, F.: A hybrid algorithm for optimal wireless sensor network deployment with the minimum number of sensor nodes. Algorithms, Vol. 10, No. 3, 2017, 19 p., doi: 10.3390/a10030080. Open DOISearch in Google Scholar

[41] ALAVI, A. H. - HASNI, H. - LAJNEF, N. - CHATTI, K.: Continuous health monitoring of pavement systems using smart sensing technology. Constr. Build. Mater., Vol. 114, 2016, pp. 719–736, doi: 10.1016/j.conbuildmat.2016.03.128. Open DOISearch in Google Scholar

[42] RHIMI, M. - LAJNEF, N. - CHATTI, K. - FARIDAZAR, F.: A self-powered sensing system for continuous fatigue monitoring of in-service pavements. Int. J. Pavement Res. Technol., Vol. 5, No. 5, 2012, pp. 303–310, doi: 10.6135/ijprt.org.tw/2012.5(5).303. Open DOISearch in Google Scholar

[43] ARRAIGADA, M. - PARTL, M. N. - ARRAIGADA, M. - ANGELONE, S.: Determination of Road Deflections from Traffic Induced Accelerations. Road Mater. Pavement Des., Vol. 8, No. 3, 2007, pp. 399–421, doi: 10.1080/14680629.2007.9690081. Open DOISearch in Google Scholar

[44] DI BENEDETTO, H. - PARTL, M. N. - FRANCKEN, L. - ROCHE, C. D. LA. - ANDRÉ, S.: Stiffness testing for bituminous mixtures. RILEM technical committes 182-PEB performance testing and evaluation of bituminouss materials. Mater. Struct., Vol. 34, 2001, pp. 66–70.10.1007/BF02481553 Search in Google Scholar

[45] LEE, T. - CHUN, C. - RYU, S. K.: Detection of Road-Surface Anomalies Using a Smartphone Camera and Accelerometer. Sensors, Vol. 21, Iss. 2, 2021, 17 p., doi: 10.3390/s21020561. Open DOISearch in Google Scholar

[46] JI, X. - HOU, Y. - CHEN, Y. - ZHEN, Y.: Fabrication and performance of a self-powered damage-detection aggregate for asphalt pavement. Materials & Design, Vol. 179, 2019, 11 p., doi: 10.1016/j.matdes.2019.107890. Open DOISearch in Google Scholar

[47] MANOSALVAS-PAREDES, M. - ROBERTS, R. - BARRIERA, M. - MANTALOVAS, K.: Towards more sustainable pavement management practices using embedded sensor technologies. Infrastructures, Vol. 5, No. 1, 2020, 20 p., doi: 10.3390/infrastructures5010004. Open DOISearch in Google Scholar

[48] NAVARRETE, M. C. - BERNABEU, E.: Fibre-optic weigh-in-motion sensor. Sensors and Actuators A Physical, Vol. 41, Iss. 1-3, 2014, pp. 110-113.10.1016/0924-4247(94)80097-9 Search in Google Scholar

[49] SIGNORE, J. M. - ROESLER, J. R.: Using fiber-optic sensing techniques to monitor behavior of transportation materials. Transp. Res. Rec., No. 1478, 1995, pp. 37–43. Search in Google Scholar

[50] WANG, J. N. - TANG, J. L.: Part 4: Fiber-Optic Sensor and Three-Dimensional Data Applications in Transportation: Using Fiber Bragg Grating Sensors to Monitor Pavement Structures. Transp. Res. Rec. J. Transp. Res. Board, Vol. 1913, 2005, pp. 164–176, doi: 10.3141/1913-16. Open DOISearch in Google Scholar

[51] MAO, J. - CHEN, J. - CUI, L. - JIN, W. - XU, C. - HE, Y.: Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors. Sensors, Vol. 15, No. 4, 2015, pp. 8866–8883, doi: 10.3390/s150408866. Open DOISearch in Google Scholar

[52] CHAPELEAU, X. - BLANC, J. - HORNYCH, P. - GAUTIER, J. L. - CARROGET, J.: Assessment of cracks detection in pavement by a distributed fiber optic sensing technology. J. Civ. Struct. Heal. Monit., Vol. 7, No. 4, 2017, pp. 459–470, doi: 10.1007/s13349-017-0236-5. Open DOISearch in Google Scholar

[53] GRELLET, D. - DORÉ, G. - KERZREHO, J. P. - PIAU, J. M. - CHABOT, A. - HORNYCH, P.: Experimental and theoretical investigation of three dimensional strain occurring near the surface in asphalt concrete layers. RILEM Bookseries, Vol. 4, 2012, pp. 1017–1027, doi: 10.1007/978-94-007-4566-7_97. Open DOISearch in Google Scholar

[54] ZHOU, Z. et al.: Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement. Mech. Syst. Signal Process, Vol. 28, No. 2018, 2012, pp. 36–49, doi: 10.1016/j.ymssp.2011.10.003. Open DOISearch in Google Scholar

[55] The forever open road - defining the next generation road. Transportation Research Board, https://trid.trb.org/view/1298573. Search in Google Scholar

[56] VAN DEN BERGH, W. et al.: Demonstrating Innovative Technologies for the Flemish Asphalt Sector in the CyPaTs Project. IOP Conf. Ser. Mater. Sci. Eng., Vol. 471, Iss. 2, 2019, 10 p., doi: 10.1088/1757-899X/471/2/022031. Open DOISearch in Google Scholar

[57] AL-QADI, I. L. - LOULIZI, A. - ELSEIFI, M. - LAHOUAR, S.: The Virginia Smart Road: The Impact of Pavement Instrumentation on Understanding Pavement Performance. Asph. Paving Technol. Tech. Sess., Vol. 73, 2004, pp. 427–465, https://experts.illinois.edu/en/publications/the-virginia-smart-road-the-impact-of-pavement-instrumentation-on-2. Search in Google Scholar

[58] GABORIT, P. - SAUZÉAT, C. - DI BENEDETTO, H. - POUGET, S. - OLARD, F. - CLAUDE, A.: Investigation of highway pavements using in-situ strain sensors. Sustainability, Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management - Proceedings of the 3rd International Conference on Tranportation Infrastructure, ICTI 2014, pp. 331–337, doi: 10.1201/b16730-49. Open DOISearch in Google Scholar

[59] POUTEAU, B. - BERRADA, K. - DROUADAINE, I.: Smartvia concept : a 5 years feedback on standalone pavement structure monitoring. E&E Congress, 6th Eurasphalt & Eurobitume Congress, 2016, 13 p. doi: 10.14311/ee.2016.202. Open DOISearch in Google Scholar

[60] AI, C. - RAHMAN, A. - XIAO, C. - YANG, E. - QIU, Y.: Analysis of measured strain response of asphalt pavements and relevant prediction models. Int. J. Pavement Eng., Vol. 18, No. 12, 2017, pp. 1089–1097, doi: 10.1080/10298436.2016.1149836. Open DOISearch in Google Scholar

[61] DUONG, N. S. - BLANC, J. - HORNYCH, P. - BOUVERET, B. - CARROGET, J. - LE FEUVRE, Y.: Continuous strain monitoring of an instrumented pavement section. Int. J. Pavement Eng., Vol. 20, No. 12, 2019, pp. 1435–1450, doi: 10.1080/10298436.2018.1432859. Open DOISearch in Google Scholar

[62] CHABOT, A. - CHUPIN, O. - DELOFFRE, L. - DUHAMEL, D.: ViscoRoute 2.0 a Tool for the Simulation of Moving Load Effects on Asphalt Pavement. Road Mater. Pavement Des., Vol. 11, No. 2, 2010, pp. 227–250, doi: 10.3166/rmpd.11.227-250. Open DOISearch in Google Scholar

[63] IODICE, M. - MUGGLETON, J. M. - RUSTIGHI, E.: The in-situ evaluation of surface-breaking cracks in asphalt using a wave decomposition method. Nondestructive Testing and Evaluation, Vol. 36, Iss. 4, 2021, pp. 388-410, doi: 10.1080/10589759.2020.1764553. Open DOISearch in Google Scholar

[64] GEERNAERT, T. et al.: Microstructured optical fiber Bragg grating-based strain and temperature sensing in the concrete buffer of the Belgian supercontainer concept. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9157, 2014, doi: 10.1117/12.2059369. Open DOISearch in Google Scholar

[65] GODOY, J. - HABER, R. - MUÑOZ, J. J. - MATÍA, F. - GARCÍA, Á.: Smart sensing of pavement temperature based on low-cost sensors and V2I communications. Sensors, Vol. 18, No. 7, 2018, pp. 1–15, doi: 10.3390/s18072092. Open DOISearch in Google Scholar

[66] ŽILIŪTE, L. - MOTIEJŪNAS, A. - KLEIZIENE, R. - GRIBULIS, G. - KRAVCOVAS, I.: Temperature and Moisture Variation in Pavement Structures of the Test Road. Transp. Res. Procedia, Vol. 14, 2016, pp. 778–786, doi: 10.1016/j.trpro.2016.05.067. Open DOISearch in Google Scholar

[67] YANG, S.: Health monitoring of pavement systems using smart sensing technologies. Graduate thesis. Iowa State University, 2014, 198 p., https://lib.dr.iastate.edu/etd/14247/. Search in Google Scholar

[68] XUE, W. - WANG, L. - WANG, D.: A prototype integrated monitoring system for pavement and traffic based on an embedded sensing network. IEEE Trans. Intell. Transp. Syst., Vol. 16, Vo. 3, 2015, pp. 1380–1390, doi: 10.1109/TITS.2014.2364253. Open DOISearch in Google Scholar

[69] LAN, J. - XIANG, Y. - WANG, L. - SHI, Y.: Vehicle detection and classification by measuring and processing magnetic signal. Meas. J. Int. Meas. Confed., Vol. 44, No. 1, 2011, pp. 174–180, doi: 10.1016/j.measurement.2010.09.044. Open DOISearch in Google Scholar

[70] KUNZLER, M. - UDD, E. - TAYLOR, T. - KUNZLER, W.: Traffic monitoring using fiber optic grating sensors on the I-84 freeway and future uses in WIM. Sixth Pacific Northwest Fiber Opt. Sens. Work., Vol. 5278, 2003, p. 122, doi: 10.1117/12.544456. Open DOISearch in Google Scholar

[71] COSENTINO, P. J. - VON ECKROTH, W. - GROSSMAN, B. G.: Analysis of fiber optic traffic sensors in flexible pavements. J. Transp. Eng., Vol. 129, No. 5, 2003, pp. 549–557, doi: 10.1061/(ASCE)0733-947X(2003)129:5(549). Open DOISearch in Google Scholar

[72] LOUKILI, M. - KOTRASOVA, K. - BOUAINE, A.: A Generating - Absorbing Boundary Condition Applied to Wave - Current Interactions Using the Method of Fundamental Solutions. Civ. Environ. Eng., Vol. 17, Iss. 2, 2021, pp. 343–352, doi: 10.2478/cee-2021-0036. Open DOISearch in Google Scholar

[73] FAY, L. - AKIN, M. - MUTHUMANI, A.: Quantifying Salt Concentration on Pavement – Phase II. Final Report 2018, 108 p., https://intrans.iastate.edu/app/uploads/2018/10/quantifying_pvmt_salt_concentration_phase_I_w_cvr.pdf. Search in Google Scholar

[74] SARGAND, S. M. - GREEN, R. - KHOURY, I.: Instrumenting Ohio Test Pavement. Transp. Res. Rec. J. Transp. Res. Board, Vol. 1596, No. 1, 1997, pp. 23–30, doi: 10.3141/1596-04. Open DOISearch in Google Scholar

[75] GONÇALVES, F. P. - CERATTI, J. A. P, - BICA, A. V. D.: The Use of Embedded Stress Cells for Monitoring Pavement Performance. Geotechnical Testing Journal, Vol. 26, No. 4, 2003. pp. 363–372, doi: 10.1520/gtj11256j. Open DOISearch in Google Scholar

[76] LEBENTAL, B. - GHADDAB, B. - MICHELIS, F.: Nanotechnology in Construction. Nanotechnol. Constr., 2015, pp. 383–388, doi: 10.1007/978-3-319-17088-6. Open DOISearch in Google Scholar

eISSN:
2199-6512
Idioma:
Inglés