Acceso abierto

The Biological Monitoring as a Source of Information on Environmental Pollution with Heavy Metals


Cite

[1] Wardencki W, editor. Bioanalityka w ocenie zanieczyszczeń środowiska [Bioanalytics in the assessment of environmental pollution]. Gdańsk: CEEAM; 2004. ISBN: 839190816X. Search in Google Scholar

[2] Aničić Urošević M, Milićević T. Moss Bag Biomonitoring of Airborne Pollutants as an Ecosustainable Tool for Air Protection Management: Urban and Agricultural Scenario. In: Shukla V, Kumar N, editors. Environmental Concerns and Sustainable Development. Singapore: Springer; 2020. 29-60. DOI: 10.1007/978-981-13-5889-0_2.10.1007/978-981-13-5889-0_2 Search in Google Scholar

[3] Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res. 2003;93(3):221-30. DOI: 10.1016/S0013-9351(03)00141-5.10.1016/S0013-9351(03)00141-514615231 Search in Google Scholar

[4] Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere. 2021;263:1-15. DOI: 10.1016/j.chemosphere.2020.128190.10.1016/j.chemosphere.2020.12819033297155 Search in Google Scholar

[5] Hussain S, Hoque RR. Biomonitoring of metallic air pollutants in unique habitations of the Brahmaputra Valley using moss species - Atrichum angustatum: spatiotemporal deposition patterns and sources. Environ Sci Pollut Res. 2022;29:10617-34. DOI: 10.1007/s11356-021-16153-x.10.1007/s11356-021-16153-x34524675 Search in Google Scholar

[6] Sorrentino MC, Capozzi F, Wuyts K, Joosen S, Mubiana VK, Giordano S, et al. Mobile biomonitoring of atmospheric pollution: A new perspective for the moss-bag approach. Plants. 2021;10:1-13. DOI: 10.3390/plants10112384.10.3390/plants10112384862168434834748 Search in Google Scholar

[7] Ștefănuț S, Öllerer K, Manole A, Ion MC, Constantin M, Banciu C, et al. National environmental quality assessment and monitoring of atmospheric heavy metal pollution - A moss bag approach. J Environ Manage. 2019;248:109224. DOI: 10.1016/j.jenvman.2019.06.125.10.1016/j.jenvman.2019.06.12531310934 Search in Google Scholar

[8] Morales-Casa V, Rebolledo J, Ginocchio R, Saéz-Navarrete C. The effect of “moss bag” shape in the air monitoring of metal(oid)s in semi-arid sites: Influence of wind speed and moss porosity. Atmos Pollut Res. 2019;10:1921-30. DOI: 10.1016/j.apr.2019.08.005.10.1016/j.apr.2019.08.005 Search in Google Scholar

[9] Rogova N, Ryzhakova N, Gusvitskii K, Eruntsov V. Studying the influence of seasonal conditions and period of exposure on trace element concentrations in the moss-transplant Pylaisia polyantha. Environ Monit Assess. 2021;193:1-9. DOI: 10.1007/s10661-021-08900-x.10.1007/s10661-021-08900-x33683486 Search in Google Scholar

[10] Bowie MH, Stokvis E, Barber K, Marris J, Hodge S. Identification of potential invertebrate bioindicators of restoration trajectory at a quarry site in Hunua, Auckland, New Zealand. N Z J Ecol. 2019;43:1-11. Available from: https://www.researchgate.net/publication/329842986_Identification_of_potential_invertebrate_bioindicators_of_restoration_trajectory_at_a_quarry_site_in_Hunua_Auckland_New_Zealand#fullTextFileContent.10.20417/nzjecol.43.5 Search in Google Scholar

[11] Giráldez P, Varela Z, Aboal JR, Fernández JÁ. Testing different methods of estimating edaphic inputs in moss biomonitoring. Sci Total Environ. 2021;778:146332. DOI: 10.1016/j.scitotenv.2021.146332.10.1016/j.scitotenv.2021.14633234030350 Search in Google Scholar

[12] Stojanowska A, Mach T, Olszowski T, Bihałowicz JS, Górka M, Rybak J, et al. Air pollution research based on spider web and parallel continuous particulate monitoring - a comparison study coupled with identification of sources. Minerals. 2021;11:1-20. DOI: 10.3390/min11080812.10.3390/min11080812 Search in Google Scholar

[13] Winkler A, Contardo T, Lapenta V, Sgamellotti A, Loppi S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Sci Total Environ. 2022;823:153729. DOI: 10.1016/j.scitotenv.2022.153729.10.1016/j.scitotenv.2022.15372935143797 Search in Google Scholar

[14] Contardo T, Vannini A, Sharma K, Giordani P, Loppi S. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy). Chemosphere. 2020;256:127155. DOI: 10.1016/j.chemosphere.2020.127155.10.1016/j.chemosphere.2020.12715532470739 Search in Google Scholar

[15] Gao G, Zeng H, Zhou Q. Biomonitoring atmospheric pollution of polycyclic aromatic hydrocarbons using mosses. Atmosphere. 2023;14:1-16. DOI: 10.3390/atmos14010026.10.3390/atmos14010026 Search in Google Scholar

[16] Cowden P, Aherne J. Assessment of atmospheric metal deposition by moss biomonitoring in a region under the influence of a long standing active aluminium smelter. Atmos Environ. 2019;201:84-91. DOI: 10.1016/j.atmosenv.2018.12.022.10.1016/j.atmosenv.2018.12.022 Search in Google Scholar

[17] Dołęgowska S, Migaszewski ZM. Biomonitoring with mosses: Uncertainties related to sampling period, intra-site variability, and cleaning treatments. Ecol Indic. 2019;101:296-302. DOI: 10.1016/j.ecolind.2019.01.033.10.1016/j.ecolind.2019.01.033 Search in Google Scholar

[18] Kousehlar M, Widom E, Kuentz D. Osmium isotope geochemistry of steel plant emissions using tree bark biomonitoring. Environ Pollut. 2021;272:115976. DOI: 10.1016/j.envpol.2020.115976.10.1016/j.envpol.2020.11597633172700 Search in Google Scholar

[19] Fang T, Jiang T, Yang K, Li J, Liang Y, Zhao X, et al. Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. Environ Monit Assess. 2021;193:1-14. DOI: 10.1007/s10661-021-08926-1.10.1007/s10661-021-08926-133641075 Search in Google Scholar

[20] Słonina N, Świsłowski P, Rajfur M. Passive and active biomonitoring of atmospheric aerosol with the use of mosses. Ecol Chem Eng S. 2021;28:163-72. DOI: 10.2478/eces-2021-0012.10.2478/eces-2021-0012 Search in Google Scholar

[21] Świsłowski P, Ziembik Z, Rajfur M. Air quality during new year’s eve: A biomonitoring study with moss. Atmosphere. 2021;12:1-13. DOI: 10.3390/atmos12080975.10.3390/atmos12080975 Search in Google Scholar

[22] Bowden JA, Nocito BA, Lowers RH, Guillette LJ, Williams KR, Young VY. Environmental indicators of metal pollution and emission: An experiment for the instrumental analysis laboratory. J Chem Educ. 2012;89:1057-60. DOI: 10.1021/ed200490y.10.1021/ed200490y Search in Google Scholar

[23] Içel Y, Çobanoǧlu G. Biomonitoring of atmospheric heavy metal pollution using lichens and mosses in the city of Istanbul, Turkey. Fresenius Environ Bull. 2009;18:2066-71. Available from: https://www.researchgate.net/publication/287706544_Biomonitoring_of_atmospheric_heavy_metal_pollution_using_lichens_and_mosses_in_the_city_of_Istanbul_Turkey#fullTextFileContent. Search in Google Scholar

[24] Pongpiachan S, Iijima A, Cao J. Hazard quotients, hazard indexes, and cancer risks of toxic metals in PM10 during firework displays. Atmosphere. 2018;9:1-18. DOI: 10.3390/atmos9040144.10.3390/atmos9040144 Search in Google Scholar

[25] Kłos A, Rajfur M, Wacławek M, Wacławek W. Impact of roadway particulate matter on deposition of pollutants in the vicinity of main roads. Environ Prot Eng. 2009;35:105-21. Search in Google Scholar

[26] Urošević MA, Lazo P, Stafilov T, Nečemer M, Andonovska KB, Balabanova B, et al. Active biomonitoring of potentially toxic elements in urban air by two distinct moss species and two analytical techniques: a pan-Southeastern European study. Air Qual Atmos Health. 2022:1-18. DOI: 10.1007/s11869-022-01291-z.10.1007/s11869-022-01291-z Search in Google Scholar

[27] Yatim NM, Azman NIA. Moss as bio-indicator for air quality monitoring at different air quality environment. Int J Eng Adv Technol. 2021;10:43-7. DOI: 10.35940/ijeat.e2579.0610521.10.35940/ijeat.E2579.0610521 Search in Google Scholar

[28] Pelit FO, Demirdöğen RE, Henden E. Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke. Environ Monit Assess. 2013;185:9471-9. DOI: 10.1007/s10661-013-3266-4.10.1007/s10661-013-3266-423712460 Search in Google Scholar

[29] Gill B, Britz-McKibbin P. Biomonitoring of smoke exposure in firefighters: a review. Curr Opin Environ Sci Health. 2020;15:57-65. DOI: 10.1016/j.coesh.2020.04.002.10.1016/j.coesh.2020.04.002 Search in Google Scholar

[30] Rajfur M, Świsłowski P, Nowainski F, Śmiechowicz B. Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. Chem Didact Ecol Metrol. 2018;23:127-36. DOI: 10.1515/cdem-2018-0008.10.1515/cdem-2018-0008 Search in Google Scholar

[31] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.10.2478/eces-2020-0013 Search in Google Scholar

[32] Debén S, Fernández JA, Giráldez P, Vázquez Arias A, Aboal JR. Methodological advances to biomonitor water quality with transplanted aquatic mosses. Sci Total Environ. 2020;706:136082. DOI: 10.1016/j.scitotenv.2019.136082.10.1016/j.scitotenv.2019.13608231855645 Search in Google Scholar

[33] Debén S, Aboal JR, Giráldez P, Varela Z, Fernández JA. Developing a biotechnological tool for monitoring water quality: In vitro clone culture of the aquatic moss fontinalis antipyretica. Water. 2019;11:1-10. DOI: 10.3390/w11010145.10.3390/w11010145 Search in Google Scholar

[34] Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al. Macroalgae in biomonitoring of metal pollution in the Bay of Bengal coastal waters of Cox’s Bazar and surrounding areas. Sci Rep. 2021;11:1-13. DOI: 10.1038/s41598-021-99750-7.10.1038/s41598-021-99750-7854605034697391 Search in Google Scholar

[35] García-Seoane R, Fernández JA, Villares R, Aboal JR. Use of macroalgae to biomonitor pollutants in coastal waters: Optimization of the methodology. Ecol Indic. 2018;84:710-26. DOI: 10.1016/j.ecolind.2017.09.015.10.1016/j.ecolind.2017.09.015 Search in Google Scholar

[36] Al-Homaidan AA, Al-Ghanayem AA, Al-Qahtani HS, Al-Abbad AF, Alabdullatif JA, Alwakeel SS, et al. Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere. 2021;263:127998. DOI: 10.1016/j.chemosphere.2020.127998.10.1016/j.chemosphere.2020.12799832835982 Search in Google Scholar

[37] Haghshenas V, Kafaei R, Tahmasebi R, Dobaradaran S, Hashemi S, Sahebi S, et al. Potential of green/brown algae for monitoring of metal(loid)s pollution in the coastal seawater and sediments of the Persian Gulf: ecological and health risk assessment. Environ Sci Pollut Res. 2020;27:7463-75. DOI: 10.1007/s11356-019-07481-0.10.1007/s11356-019-07481-031884533 Search in Google Scholar

[38] Kamala-Kannan S, Prabhu Dass Batvari B, Lee KJ, Kannan N, Krishnamoorthy R, Shanthi K, et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere. 2008;71:1233-40. DOI: 10.1016/j.chemosphere.2007.12.004.10.1016/j.chemosphere.2007.12.00418262218 Search in Google Scholar

[39] Gupta A. Heavy metals in water, periphytonic algae, detritus, and insects from two streams in Shillong, Notheastern India. Environ Monit Assess. 1996;40:215-23. DOI: 10.1007/BF00398867.10.1007/BF0039886724198152 Search in Google Scholar

[40] Topcuoǧlu S, Kirbaşoǧlu Ç, Güngör N. Heavy metals in organisms and sediments from Turkish coast of the Black Sea, 1997-1998. Environ Int. 2002;27:521-6. DOI: 10.1016/S0160-4120(01)00099-X.10.1016/S0160-4120(01)00099-X11868661 Search in Google Scholar

[41] Michalak A, Świsłowski P, Rajfur M. The assessment of heavy metal contamination of the cultivated soils in the odra river floodplain. Chem Didact Ecol Metrol. 2021; 26(1-2):55-64. DOI: 10.2478/cdem-2021-0004.10.2478/cdem-2021-0004 Search in Google Scholar

[42] Rajfur M, Klos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2011;46:1401-8. DOI: 10.1080/10934529.2011.606717.10.1080/10934529.2011.60671721942393 Search in Google Scholar

[43] Absalon D, Matysik M, Habel M. Water quality in main dam reservoirs in Poland. Qual Water Resour Pol Sprin Wat. 2021:145-71. DOI: 10.1007/978-3-030-64892-3_7.10.1007/978-3-030-64892-3_7 Search in Google Scholar

[44] Aleksiayenak Y, Frontasyeva M. A ten-year biomonitoring study of atmospheric deposition of trace elements at the territory of the Republic of Belarus. Ecol Chem Eng S. 2019;26(3):455-64. DOI: 10.1515/eces-2019-0034.10.1515/eces-2019-0034 Search in Google Scholar

[45] Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res. 2019;26:29620-38. DOI: 10.1007/s11356-019-06270-z.10.1007/s11356-019-06270-z31463756 Search in Google Scholar

[46] Vuković G, Aničić Uroševic M, Razumenić I, Kuzmanoski M, Pergal M, Škrivanj S, et al. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmos Environ. 2014;85:31-40. DOI: 10.1016/j.atmosenv.2013.11.053.10.1016/j.atmosenv.2013.11.053 Search in Google Scholar

[47] Maćkiewicz E, Pawlaczyk A, Szynkowska MI. Trace elements in the environment-law, regulations, monitoring and biomonitoring methods. Recent Adv Trace Elem. 2018:61-104. DOI: 10.1002/9781119133780.ch4.10.1002/9781119133780.ch4 Search in Google Scholar

[48] Svozilík V, Krakovská AS, Bitta J, Jančík P. Comparison of the air pollution mathematical model of PM10 and moss biomonitoring results in the Tritia region. Atmosphere. 2021;12:1-24. DOI: 10.3390/atmos12060656.10.3390/atmos12060656 Search in Google Scholar

eISSN:
2084-4506
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Chemistry, other