Goodfellow, I., Y. Bengio, A. Courville. Deep Learning. MIT Press, USA, 2016. Search in Google Scholar

Bassi, S. J., E. D. Gbenga, A. Abidemi, D. Opeoluwa Oyewola, B. M. Khammas. Metaheuristic Algorithms for PID Controller Parameters Tuning: Review, Approaches and Open Problems. – Heliyon, Vol. 8, 2022, Issue 5, e09399. DOI: 10.1016/j.heliyon.2022.e09399. Search in Google Scholar

Toshev, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results. – Cybernetics and Information Technologies, Vol. 19, 2019, No 4, pp. 26-44. Search in Google Scholar

Stoilova, K., T. Stoilov, S. Dimitrov. Bi-Level Optimization Model for Urban Traffic Control. – Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 108-126. Search in Google Scholar

Yadav, D. Blood Coagulation Algorithm: A Novel Bio-Inspired Meta-Heuristic Algorithm for Global Optimization. – Methematics, Vol 9, 2021, 3011. DOI: 10.3390/math9233011. Search in Google Scholar

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko. Mathematical Theory of Optimal Processes. Nauka, Moscow, 1969 (in Russian). Search in Google Scholar

Oleinikov, V. A., N. S. Zotov, A. M. Pryshvin. Basics of Optimal and Extremal Control. Vyschaya Shkola, 1969 (in Russian). Search in Google Scholar

Romacevych, Y., V. Loveikin, O. Stekhno. Closed-Loop Optimal Control of a System Trolley – Payload. – UPB Scientific Bulletin, Series D: Mechanical Engineering, Vol. 81, 2019, No 2, 312, pp. 3-12. Search in Google Scholar

Romasevych, Y., V. Loveikin, M. Ohiienko, L. Shymko, K. Łukawiecki. Innovation Management in Agriculture. Agrotronics and Design of Optimal Controllers Based on New Modifications of Particle Swarm Optimization, 2021. Search in Google Scholar

Boom, T. V., J. Klaassens, R. Meiland. Real-Time Time-Optimal Control for a Nonlinear Container Crane Using a Neural Network. – In: Informatics in Control, Automation and Robotics II. Springer, Dordrecht, 2007, pp. 79-84. DOI: 10.1007/978-1-4020-5626-0_10. Search in Google Scholar

Ermidoro, M., S. Formentin, A. Cologni, F. Previdi, S. M. Savaresi. On Time-Optimal Anti-Sway Controller Design for Bridge Cranes. – In: Proc. of 2014 American Control Conference, 2014, pp. 2809-2814. DOI: 10.1109/acc.2014.6858939. Search in Google Scholar

Loveikin, V. S., Y. A. Romasevich, S. A. Khoroshun, A. G. Shevchuck. Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 1. – International Applied Mechanics, Vol. 54, 2018, No 3, pp. 358-365. DOI: 10.1007/s10778-018-0887-x. Search in Google Scholar

Loveikin, V. S., Y. A. Romasevich, S. A. Khoroshun, A. G. Shevchuck. Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 2. – International Applied Mechanics, Vol. 56, 2020, No 2, pp. 208-215. DOI: 10.1007/s10778-020-01007-9. Search in Google Scholar

Da Cruz, J. J., F. Leonardi. Minimum-Time Anti-Swing Motion Planning of Cranes Using Linear Programming. – Optimal Control Applications and Methods, Vol. 34, 2012, No 2, pp. 191-201. DOI: 10.1002/oca.2016. Search in Google Scholar

Chen, H., Y. Fang, N. Sun. A Swing Constrained Time-Optimal Trajectory Planning Strategy for Double Pendulum Crane Systems. – Nonlinear Dynamics, Vol. 89, 2017, No 2, pp. 1513-1524. DOI: 10.1007s11071. Search in Google Scholar

CVX: Matlab Software for Disciplined Convex Programming. Search in Google Scholar

Yiming, W., S. Ning, C. He, Z. Jianyi, F. Yongchun. Nonlinear Time-Optimal Trajectory Planning for Varying Rope-Length Overhead Cranes. – Assembly Automation, Vol. 35, 2018, No 5, pp. 587-594. DOI: 10.1108/AA-12-2017-183. Search in Google Scholar

Rao, A. V., D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, I. Sanders, G. T. Huntington. GPOPS: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral Method. – ACM Transactions on Mathematical Software, Vol. 37, 2010, No 2, pp. 22:1-22:39. DOI: 10.1145/1731022.1731032. S2CID 15375549. Search in Google Scholar

Wu, Q., X. Wang, L. Hua, M. Xia. Dynamic Analysis and Time Optimal Anti-Swing Control of Double Pendulum Bridge Crane with Distributed Mass Beams. – Mechanical Systems and Signal Processing, Vol. 144, 2020, 106968. DOI: 10.1016/j.ymssp.2020.106968. Search in Google Scholar

Smekhov, A. A., N. I. Erofeev. Optimal Control of Carrying-and-Lifting Machines. Moscow, Mashinostroenie, 1975 (in Russian). Search in Google Scholar

Yoshida, Y. Feedback Control and Time-Optimal Control about Overhead Crane by Visual Servo and These Combination. – In: Control – Intelligent Mechatronics. 2011. DOI: 10.5772/15198. Search in Google Scholar

Gerasimiak, R. P., V. A. Lestchev. Analysis and Synthesis of Crane Electromechanical Systems. SMIL, Odessa, 2008 (in Russian). Search in Google Scholar

Perelmuter, M. M., L. N. Poliakov. Load Oscillation Elimination, which is Suspended to a Crane Trolley, via its Drive Control. – Isvestia Vuzov. Electromechanica, No 7, 1971, pp. 769-774 (in Russian). Search in Google Scholar

Brand, Z., M. O. T. Cole. Mini-Max Optimization of Actuator/Sensor Placement for Flexural Vibration Control of a Rotating Thin-Walled Cylinder over a Range of Speeds. – Journal of Sound and Vibration, Vol. 506, 2021, 116105. DOI: 10.1016/j.jsv.2021.116105. Search in Google Scholar

Romasevych, Y., V. Loveikin, Y. Loveikin. Development of a PSO Modification with Varying Cognitive Term. – In: Proc. of 3rd IEEE KhPI Week on Advanced Technology (KhPIWeek’22), IEEE, 2022, pp. 55-59. DOI: 10.1109/KhPIWeek57572.2022.9916413. Search in Google Scholar

Shi, Y., R. Eberhart. A Modified Particle Swarm Optimizer. – In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, 1998, pp. 69-73. DOI: 10.1109/ICEC.1998.699146. Search in Google Scholar

Romasevych, Y., V. Loveikin, V. Makarets. Optimal Constrained Tuning of PI-Controllers via a New PSO-Based Technique. – International Journal of Swarm Intelligence Research, Vol. 11, 2020, Issue 4, pp. 87-105. DOI: 10.4018/IJSIR.2020100104. Search in Google Scholar

Storn, R., K. V. Price. Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Institute of Company Secretaries of India, Chennai, Tamil Nadu. Tech. Report TR-95-012, 1995. Search in Google Scholar

Storn, R., K. Price. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. – Journal of Global Optimization, Vol. 11, 1997, No 4, pp. 341-359. Search in Google Scholar

Caraffini, F., A. V. Kononova, D. Corne. Infeasibility and Structural Bias in Differential Evolution. – Information Sciences, Vol. 496, 2019, pp. 161-179. DOI: 10.1016/j.ins.2019.05.019. Search in Google Scholar

Brest, J., S. Greiner, B. Boskovic, M. Mernik, V. Zumer. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. – IEEE Transactions on Evolutionary Computation, Vol. 10, 2006, No 6, pp. 646-657. DOI: 10.1109/tevc.2006.872133. Search in Google Scholar

Mittal, N., U. Singh, B. S. Sohi. Modified Grey Wolf Optimizer for Global Engineering Optimization. – Applied Computational Intelligence and Soft Computing, 2016, pp. 1-16. DOI: 10.1155/2016/7950348. Search in Google Scholar

Saremi, S., S. Z. Mirjalili, S. M. Mirjalili. Evolutionary Population Dynamics and Grey Wolf Optimizer. – Neural Computing and Applications, Vol. 26, 2014, No 5, pp. 1257-1263. DOI: 10.1007/s00521-014-1806-7. Search in Google Scholar

Wang, H., W. Wang, H. Sun, S. Rahnamayan. Firefly Algorithm with Random Attraction. – International Journal of Bio-Inspired Computation, Vol. 8, 2016, No 1, 33. DOI: 10.1504/ijbic.2016.074630. Search in Google Scholar

Guo, Z., H. Yang, S. Wang, C. Zhou, X. Liu. Adaptive Harmony Search with Best-Based Search Strategy. – Soft Computing, Vol. 22, 2016, No 4, pp. 1335-1349. DOI:10.1007/s00500-016-2424-3. Search in Google Scholar

Kumar, V., J. K. Chhabra, D. Kumar. Parameter Adaptive Harmony Search Algorithm for Unimodal and Multimodal Optimization Problems. – Journal of Computational Science, Vol. 5, 2014, No 2, pp. 144-155. DOI: 10.1016/j.jocs.2013.12.001. Search in Google Scholar

Naik, M., M. R. Nath, A. Wunnava, S. Sahany, R. Panda. A New Adaptive Cuckoo Search Algorithm. – In: Proc. of 2015 2nd International IEEE Conference on Recent Trends in Information Systems, 2015. DOI: 10.1109/retis.2015.7232842. Search in Google Scholar

Wolpert, D. H., W. G. Macready. No Free Lunch Theorems for Optimization. – In: IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No 1, pp. 67-82. DOI: 10.1109/4235.585893. Search in Google Scholar

Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology