1. bookVolumen 22 (2022): Edición 3 (September 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

A New Network Digital Forensics Approach for Internet of Things Environment Based on Binary Owl Optimizer

Publicado en línea: 22 Sep 2022
Volumen & Edición: Volumen 22 (2022) - Edición 3 (September 2022)
Páginas: 146 - 160
Recibido: 01 Jul 2022
Aceptado: 05 Aug 2022
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Nolin, J., N. Olson. The Internet of Things and Convenience. – Internet Research, Vol. 22, No 2, pp. 361-376. Search in Google Scholar

2. Abualghanam, O., L. Albdour, O. Adwan. Multimodal Biometric Fusion Online Handwritten Signature Verification Using Neural Network and Support Vector Machine. – Transactions, Vol. 12, 2021, No 5, pp. 1691-1703. Search in Google Scholar

3. Abualghanam, O., M. Qatawneh, W. Almobaideen. A Survey of Key Distribution in the Context of Internet of Things. – Journal of Theoretical and Applied Information Technology, Vol. 97, 2019, No 22, pp. 3217-3241. Search in Google Scholar

4. Abualghanam, O., M. Qatawneh, W. Almobaideen, M. Saadeh. A New Hierarchical Architecture and Protocol for Key Distribution in the Context of IoT-Based Smart Cities. – Journal of Information Security and Applications, Vol. 67, 2022.10.1016/j.jisa.2022.103173 Search in Google Scholar

5. Castelo Ǵomez, J. M., J. Carrillo Monďejar, J. Rolďan Ǵomez, J. L. Marťınez Marťınez. A Context-Centered Methodology for IoT Forensic Investigations. – International Journal of Information Security, Vol. 20, 2021, No 5, pp. 647-673.10.1007/s10207-020-00523-6 Search in Google Scholar

6. Atamli, A. W., A. Martin. Threat-Based Security Analysis for the Internet of Things. – In: Proc. of International Workshop on Secure Internet of Things, IEEE, 2014, pp. 35-43.10.1109/SIoT.2014.10 Search in Google Scholar

7. Carl, G., G. Kesidis, R. R. Brooks, S. Rai. Denial-of-Service Attack-Detection Techniques.– IEEE Internet Computing, Vol. 10, 2006, No 1, pp. 82-89.10.1109/MIC.2006.5 Search in Google Scholar

8. Lysenko, S., O. Savenko, K. Bobrovnikova, A. Kryshchuk. Self-Adaptive System for the Corporate Area Network Resilience in the Presence of Botnet Cyberattacks. – In: Proc. of International Conference on Computer Networks, Springer, 2018, pp. 385-401.10.1007/978-3-319-92459-5_31 Search in Google Scholar

9. Ozawa, S., T. Ban, N. Hashimoto, J. Nakazato, J. Shimamura. A Study of IoT Malware Activities Using Association Rule Learning for Darknet Sensor Data. – International Journal of Information Security, Vol. 19, 2020, No 1, pp. 83-92.10.1007/s10207-019-00439-w Search in Google Scholar

10. Xing, Y., H. Shu, H. Zhao, D. Li, L. Guo. Survey on Botnet Detection Techniques: Classification, Methods, and Evaluation. – Mathematical Problems Engineering, Vol 2021, 2021, pp. 1-24.10.1155/2021/6640499 Search in Google Scholar

11. Regan, C., M. Nasajpour, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, K. K. R. Choo. Federated IoT Security Attack Detection Using Decentralized Edge Data. – Machine Learning with Applications, Vol. 8, 2022, 100263.10.1016/j.mlwa.2022.100263 Search in Google Scholar

12. Kumar, A., T. J. Lim. Early Detection of Mirai-Like IoT Bots in Large-Scale Networks through Sub-Sampled Packet Traffic Analysis. – In: Proc. of Future of Information and Communication Conference, Springer, Vol. 70, 2019, pp. 847-867.10.1007/978-3-030-12385-7_58 Search in Google Scholar

13. Meneghello, F., M. Calore, D. Zucchetto, M. Polese, A. Zanella. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. – Internet of Things Journal, Vol. 6, 2019, No 5, pp. 8182-8201.10.1109/JIOT.2019.2935189 Search in Google Scholar

14. Datta, P., B. Sharma. A Survey on IoT Architectures, Protocols, Security and Smart City Based Applications. – In: Proc. of 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT’17), IEEE, 2017. pp. 1-5.10.1109/ICCCNT.2017.8203943 Search in Google Scholar

15. Wu, T., F. Breitinger, I. Baggili. IoT Ignorance is Digital Forensics Research Bliss: a Survey to Understand IoT Forensics Definitions, Challenges and Future Research Directions. – In: Proc. of 14th International Conference on Availability, Reliability and Security, ACM, 2019, pp. 1-15. Search in Google Scholar

16. Seda, M., B. K. P. Kramer. A Comparison of US Forensic Accounting Programs with the National Institute of Justice Funded Model Curriculum. – Journal of Forensic & Investigative Accounting, Vol. 7, 2015, No 2, pp. 144-177. Search in Google Scholar

17. Paul Joseph, D., J. Norman. An Analysis of Digital Forensics in Cyber Security. – In: Proc. of 1st International Conference on Artificial Intelligence and Cognitive Computing, Springer; 2019, pp. 701-708.10.1007/978-981-13-1580-0_67 Search in Google Scholar

18. Jordaan, J. The Role of In Cybercrime Investigation Digital Forensics. – Servamus Community-Based Safety and Security Magazine, Vol. 112, 2019, No 10, pp. 33-37. Search in Google Scholar

19. Sonmez, Y. U., A. Varol. Review of Evidence Collection and Protection Phases in Digital Forensics Process. – International Journal of Information Security Science, Vol. 6, 2017, No 4, pp. 39-45. Search in Google Scholar

20. Prakash, A., R. Priyadarshini. An Intelligent Software Defined Network Controller for Preventing Distributed Denial of Service Attack. – In: Proc. of 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT’18), IEEE, 2018, pp. 585-589.10.1109/ICICCT.2018.8473340 Search in Google Scholar

21. Shafiq, M., Z. Tian, A. K. Bashir, X. Du, M. Guizani. IoT Malicious Traffic Identification Using Wrapper-Based Feature Selection Mechanisms. – Computers & Security, Vol. 94, 2020, 101863.10.1016/j.cose.2020.101863 Search in Google Scholar

22. Koroniotis, N., N. Moustafa, E. Sitnikova, B. Turnbull. Towards the Development of Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-Iot Dataset. – Future Generation Computer Systems, Vol. 100, 2019, pp.779-796.10.1016/j.future.2019.05.041 Search in Google Scholar

23. Koroniotis, N., N. Moustafa, E. Sitnikova. A New Network Forensic Framework Based on Deep Learning for Internet of Things Networks: A Particle Deep Framework. – Future Generation Computer Systems, Vol. 110, 2020, pp. 91-106.10.1016/j.future.2020.03.042 Search in Google Scholar

24. Orěski, D., D. Andrŏcec. Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics. – In: Proc. of 43rd International Convention on Information, Communication and Electronic Technology (MIPRO’20), IEEE, 2020, pp. 1200-1205.10.23919/MIPRO48935.2020.9245140 Search in Google Scholar

25. Rizal, R., I. Riadi, Y. Prayudi. Network Forensics for Detecting Flooding Attack on Internet of Things (IoT) Device. – Int. J. Cyber-Security Digit Forensics, Vol. 7, 2018, No 4, pp. 382-390. Search in Google Scholar

26. Kumar, A., T. J. Lim. Early Detection of Mirai-Like IoT Bots in Large-Scale Networks through Sub-Sampled Packet Traffic Analysis. – In: Proc. of Future of Information and Communication Conference, Springer, 2019, pp. 847-867.10.1007/978-3-030-12385-7_58 Search in Google Scholar

27. Moustafa, N., J. Slay. The Significant Features of the UNSW-NB15 and the KDD99 Data Sets for Network Intrusion Detection Systems. – In: Proc. of 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS’15), IEEE, 2015, pp. 25-31.10.1109/BADGERS.2015.014 Search in Google Scholar

28. Papamartzivanos, D., F. G. Mármol, G. Kambourakis. Dendron: Genetic Trees Driven Rule Induction for Network Intrusion Detection Systems. – Future Generation Computer Systems, Vol. 79, 2018, pp. 558-574.10.1016/j.future.2017.09.056 Search in Google Scholar

29. Anthi, E., L. Williams, M. Słowi´nska, G. Theodorakopoulos, P. Burna p. A Supervised Intrusion Detection System for Smart Home IoT Devices. – IEEE Internet of Things Journal, Vol. 6, 2019, No 5, pp.9042-9053.10.1109/JIOT.2019.2926365 Search in Google Scholar

30. Ullah, I., Q. H. Mahmoud. A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. – In: Proc. of 16th IEEE Annual Consumer Communications & Networking Conference (CCNC’19), IEEE, 2019, pp. 1-6.10.1109/CCNC.2019.8651782 Search in Google Scholar

31. Alazzam, H., A. Alsmady, A. A. Shorman. Supervised Detection of IoT Bot-8 Net Attacks. – In: Proc. of 2nd International Conference on Data Science, e-Learning and Information Systems, ACM, 2019, pp. 1-6.10.1145/3368691.3368733 Search in Google Scholar

32. Liu, L., B. Xu, X. Zhang, X. Wu. An Intrusion Detection Method for Internet of Things Based on Suppressed Fuzzy Clustering. – EURASIP Journal on Wireless Communications and Networking, Vol. 2018, 2018, No 1, pp. 1-7. Search in Google Scholar

33. Babu, M. J., A. R. Reddy. SH-IDS: Specification Heuristics Based Intrusion Detection System for IoT Networks. – Wireless Personal Communications, Vol. 112, 2020, No 3, pp. 2023-2045.10.1007/s11277-020-07137-0 Search in Google Scholar

34. Pollitt, M. Computer Forensics: An Approach to Evidence in Cyberspace. – In: Proc. of National Information Systems Security Conference, Vol. 2, 1995, pp. 487-491. Search in Google Scholar

35. Koroniotis, N., N. Moustafa, E. Sitnikova, J. Slay. Towards Developing Network Forensic Mechanism for Botnet Activities in the IoT Based on Machine Learning Techniques. – In: Proc. of International Conference on Mobile Networks and Management, Springer, 2017, pp. 30-44.10.1007/978-3-319-90775-8_3 Search in Google Scholar

36. Koroniotis, N. Designing an Effective Network Forensic Framework for the Investigation of Botnets in the Internet of Things. University of New South Wales, Sydney, Australia, 2020. Search in Google Scholar

37. Koroniotis, N., N. Moustafa. Enhancing Network Forensics with Particle Swarm and Deep Learning: The Particle Deep Framework. – Future Generation, Vol. 110, 2020, pp. 91-106.10.1016/j.future.2020.03.042 Search in Google Scholar

38. Koroniotis, N., N. Moustafa, F. Schiliro, P. Gauravaram, H. Janicke. A Holistic Review of Cybersecurity and Reliability Perspectives in Smart Airports. – IEEE Access, Vol. 8, 2020, pp. 209802-209834.10.1109/ACCESS.2020.3036728 Search in Google Scholar

39. Alazzam, H., A. Sharieh, K. E. Sabri. A Lightweight Intelligent Network Intrusion Detection System Using OCSVM and Pigeon Inspired Optimizer. – Applied Intelligence, Vol. 52, 2022, No 4, pp. 3527-3544.10.1007/s10489-021-02621-x Search in Google Scholar

40. Jain, M., S. Maurya, A. Rani, V. Singh. Owl Search Algorithm: A Novel Nature-Inspired Heuristic Paradigm for Global Optimization. – Journal of Intelligent & Fuzzy Systems, Vol. 34, 2018, No 3, pp. 1573-1582.10.3233/JIFS-169452 Search in Google Scholar

41. Lai, G., L. Li, Q. Zeng, N. Yousefi. Developed Owl Search Algorithm for Parameter Estimation of PEMFCs. – International Journal of Ambient Energy, Vol. 2020, 2020, pp. 1-10. Search in Google Scholar

42. El-Ashmawi, W. H., D. S. Abd Elminaam, A. M. Nabil, E. Eldesouky. A Chaotic Owl Search Algorithm Based Bilateral Negotiation Model. – Ain Shams Engineering Journal, Vol. 11, 2020, No 4, pp. 1163-1178.10.1016/j.asej.2020.01.005 Search in Google Scholar

43. Moulahi, T., S. Zidi, A. Alabdulatif, M. Atiquzzaman. Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus. – IEEE Access, Vol. 9, 202, pp. 99595-99605.10.1109/ACCESS.2021.3095962 Search in Google Scholar

44. Istiaque, S. M., A. I. Khan, Z. Al Hassan, S. Waheed. Performance Evaluation of a Smart Intrusion Detection System (IDS) Model. – European Journal of Engineering and Technology Research, Vol. 6, 2021, No 2, pp. 148-152.10.24018/ejeng.2021.6.2.2371 Search in Google Scholar

45. Salih, A. A., A. M. Abdulazeez. Evaluation of Classification Algorithms for Intrusion Detection System: A Review. – Journal of Soft Computing and Data Mining, Vol. 2, 2021, No 1, pp. 31-40.10.30880/jscdm.2021.02.01.004 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo