Acceso abierto

Neural Networks in Engineering Design: Robust Practical Stability Analysis

   | 09 dic 2021

Cite

1. A. Y. Alanis, N. Arana-Daniel, C. López-Franco, Eds. Artificial Neural Networks for Engineering Applications. St. Louis, USA, Academic Press, 2019. https://www.sciencedirect.com/science/book/9780128182475 Search in Google Scholar

2. Arbib, M. Brains, Machines, and Mathematics. New York, Springer, USA,1987.10.1007/978-1-4612-4782-1 Search in Google Scholar

3. Haykin, S. Neural Networks: A Comprehensive Foundation. Englewood Cliffs, New Jersey, USA, Prentice-Hall, 1999. Search in Google Scholar

4. Bell, S., K. Bala. Learning Visual Similarity for Product Design with Convolutional Neural Networks. – ACM Transactions on Graphics, Vol. 34, 2015, No 4, Article 98. DOI: 10.1145/276695910.1145/2766959 Search in Google Scholar

5. Cakar, T., I. Cil. Artificial Neural Networks for Design of Manufacturing Systems and Selection of Priority Rules. – International Journal of Computer Integrated Manufacturing, Vol. 17, 2007, No 3, pp. 195-211.10.1080/09511920310001607078 Search in Google Scholar

6. Caudell, T. R., S. D. G. Smith, R. Escobedo, M. Anderson. NIRS: Large Scale ART-1 Neural Architectures for Engineering Design Retrieval. – Neural Networks, Vol. 7, 1994, No 9, pp. 1339-1350.10.1016/0893-6080(94)90084-1 Search in Google Scholar

7. Hsiao, S.-W., H. C. Huang. A Neural Network Based Approach for Product Form Design. – Design Studies, Vol. 23, 2002, No 1, pp. 67-84.10.1016/S0142-694X(01)00015-1 Search in Google Scholar

8. Hsu, Y., S. Wang, C. Yu. A Sequential Approximation Method Using Neural Networks for Engineering Design Optimization Problems. – Engineering Optimization, Vol. 35, 2010, No 5, pp. 489-511.10.1080/03052150310001620713 Search in Google Scholar

9. Shieh, M.-D., Y.-E. Yeh. Developing a Design Support System for the Exterior Form of Running Shoes Using Partial Least Squares and Neural Networks. – Computers & Industrial Engineering, Vol. 65, 2013, No 4, pp. 704-718.10.1016/j.cie.2013.05.008 Search in Google Scholar

10. Ayağ, Z., R. G. Özdemir. An Analytic Network Process-Based Approach to Concept Evaluation in a New Product Development Environment. – Journal of Engineering Design, Vol. 18, 2007, No 3, pp. 209-226.10.1080/09544820600752740 Search in Google Scholar

11. Hsiao, S.-W., H.-C. Tsai. Applying a Hybrid Approach Based on Fuzzy Neural Network and Genetic Algorithm to Product Form Design. – International Journal of Industrial Ergonomics, Vol. 35, 2005, No 5, pp. 411-428.10.1016/j.ergon.2004.10.007 Search in Google Scholar

12. Lai, H.-H., Y.-C. Lin, C.-H. Yeh. Form Design of Product Image Using Grey Relational Analysis and Neural Network Models. – Computers & Operations Research, Vol. 32, 2005, No 10, pp. 2689-2711.10.1016/j.cor.2004.03.021 Search in Google Scholar

13. Stamov, T. On the Applications of Neural Networks in Industrial Design: A Survey of the State of the Art. – Journal of Engineering and Applied Sciences, Vol. 15, 2020, No 7, pp. 1797-1804. Search in Google Scholar

14. Wu, B., S. Han, K. G. Shin, W. Lu. Application of Artificial Neural Networks in Design of Lithium-Ion Batteries. – Journal of Power Sources, Vol. 395, 2018, pp. 128-136.10.1016/j.jpowsour.2018.05.040 Search in Google Scholar

15. Wu, D., G. G. Wang. Causal Artificial Neural Network and Its Applications in Engineering Design. – Engineering Applications in Artificial Intelligence, Vol. 97, 2021, 104089.10.1016/j.engappai.2020.104089 Search in Google Scholar

16. Ge, S. S., C. C. Hang, T. H. Lee, T. Zhang. Stable Adaptive Neural Network Control. Boston, MA, USA, Kluwer Academic Publishers, 2001.10.1007/978-1-4757-6577-9 Search in Google Scholar

17. Korkobi, T., M. Djemel, M. Chtourou. Stability Analysis of Neural Networks-Based System Identification. – Modelling and Simulation in Engineering, Vol. 2008, 2008, Article ID 343940. Search in Google Scholar

18. Stamov, T. Stability Analysis of Neural Network Models in Engineering Design. – International Journal of Engineering and Advanced Technology, Vol. 9, 2020, No 3, pp. 1862-1866.10.35940/ijeat.C5562.029320 Search in Google Scholar

19. Stamova, I. M., T. Stamov. Asymptotic Stability of Impulsive Control Neutral-Type Systems. – International Journal of Control, Vol. 87, 2014, No 1, pp. 25-31.10.1080/00207179.2013.819590 Search in Google Scholar

20. Stamova, I. M., T. Stamov, X. Li. Global Exponential Stability of a Class of Impulsive Cellular Neural Networks with Supremums. – International Journal of Adaptive Control and Signal Processing, Vol. 28, 2014, No 11, pp. 1227-1239.10.1002/acs.2440 Search in Google Scholar

21. Tan, M.-C., Y. Zhang, W.-L. Su, Y.-N. Zhang. Exponential Stability Analysis of Neural Networks with Variable Delays. – International Journal of Bifurcation and Chaos, Vol. 20, 2010, No 5, pp. 1551-1565.10.1142/S0218127410026691 Search in Google Scholar

22. Zhang, H., Z. Wang, D. Liu. Exponential Stability Analysis of Neural Networks with Multiple Time Delays. – In: J. Wang, X. Liao, Z. Yi, Eds. Advances in Neural Networks. Berlin, Heidelberg, Springer, 2005, pp. 142-148.10.1007/11427391_21 Search in Google Scholar

23. Arik, S., V. Tavsanoglu. On the Global Asymptotic Stability of Delayed Cellular Neural Networks. – IEEE Transactions on Circuits and Systems I, Vol. 47, 2000, pp. 571-574.10.1109/81.841859 Search in Google Scholar

24. Lakshmikantham, V., S. Leela, A. A. Martynyuk. Practical Stability Analysis of Nonlinear Systems. World Scientific, Singapore, 1990.10.1142/1192 Search in Google Scholar

25. Sathananthan, S., L. H. Keel. Optimal Practical Stabilization and Controllability of Systems with Markovian Jumps. – Nonlinear Analysis, Vol. 54, 2003, No 6, pp. 1011-1027.10.1016/S0362-546X(03)00116-0 Search in Google Scholar

26. Yang, C., Q. Zhang, L. Zhou. Practical Stabilization and Controllability of Descriptor Systems. – International Journal of Information and Systems Sciences, Vol. 1, 2005, No 3-4, pp. 455-465. Search in Google Scholar

27. Ballinger, G., X. Liu. Practical Stability of Impulsive Delay Differential Equations and Applications to Control Problems. – In: X. Yang, K. L. Teo, L. Caccetta, Eds. Optimization Methods and Applications. Applied Optimization. Boston, MA, USA, Springer, 2001, pp. 3-21.10.1007/978-1-4757-3333-4_1 Search in Google Scholar

28. Stamova, I. M., J. Henderson. Practical Stability Analysis of Fractional-Order Impulsive Control Systems. – ISA Transactions, Vol. 64, 2016, pp. 77-85.10.1016/j.isatra.2016.05.01227290909 Search in Google Scholar

29. Zhang, Y., J. Sun. Practical Stability of Impulsive Functional Differential Equations in Terms of Two Measurements. – Computers & Mathematics with Applications, Vol. 48, No 10-11, 2004, pp. 1549-1556.10.1016/j.camwa.2004.05.009 Search in Google Scholar

30. Kaslik, E., S. Sivasundaram. Multistability in Impulsive Hybrid Hopfield Neural Networks with Distributed Delays. – Nonlinear Analysis, Vol. 12, 2011, No 3, pp. 1640-1649.10.1016/j.nonrwa.2010.10.018 Search in Google Scholar

31. Sun, L., C. Liu, X. Li. Practical Stability of Impulsive Discrete Systems with Time Delays. – Abstract and Applied Analysis, Vol. 2014, 2014, Article ID 954121. 10 p.10.1155/2014/954121 Search in Google Scholar

32. Wangrat, S., P. Niamsup. Exponentially Practical Stability of Impulsive Discrete Time System with Delay. – Advances in Difference Equations, Vol. 2016, 2016, Article No 277. Search in Google Scholar

33. Wangrat, S., P. Niamsup. Exponentially Practical Stability of Discrete Time Singular System with Delay and Disturbance. – Advances in Difference Equations, Vol. 2018, 2018, Article No 130. Search in Google Scholar

34. Gu, D.-W., P. H. Petkov, M. M. Konstantinov. Robust Control Design with MATLAB®. London, UK, Springer, 2013.10.1007/978-1-4471-4682-7 Search in Google Scholar

35. Feyzioglu, A., A. Kerim Kar. Axiomatic Design Approach for Nonlinear Multiple Objective Optimizaton Problem and Robustness in Spring Design. – Cybernetics and Information Technologies, Vol. 17, 2017, No 1, pp. 63-71.10.1515/cait-2017-0005 Search in Google Scholar

36. Phadke, M. S. Quality Engineering Using Robust Design. Englewood Cliffs, NJ, USA, Prentice Hall, 1989.10.1007/978-1-4684-1472-1_3 Search in Google Scholar

37. Savov, S., I. Popchev. Robust Stability Analysis of Discrete-Time Polytopic System via Homogeneous Matrix Polynomials. – Compt. Rend. Acad. bulg. Sci.: sciences mathématiques et naturelles, Vol. 70, 2017, No 12,1729.10.7546/CRABS.2018.09.10 Search in Google Scholar

38. Khalil, H. K. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, USA, 2002. Search in Google Scholar

39. Rouche, H., P. Habets, M. Laloy. Stability Theory by Lyapunov’s Direct Method. Springer, New York, USA,1977.10.1007/978-1-4684-9362-7 Search in Google Scholar

40. Kalman, R., J. Bertram. Control System Analysis and Design via the “Second Method” of Lyapunov II: Discrete-Time Systems. – Journal of Basic Engineering, Vol. 82, 1960, No 2, pp. 394-400.10.1115/1.3662605 Search in Google Scholar

41. Bobiti, R., M. Lazar. A Sampling Approach to Finding Lyapunov Functions for Nonlinear Discrete-Time Systems. – In: Proc. of 15th European Control Conference (ECC’16), Aalborg, Denmark, 2016, pp. 561-566.10.1109/ECC.2016.7810344 Search in Google Scholar

42. Giesl, P., S. Hafstein. Review on Computational Methods for Lyapunov Functions. – Discrete and Continuous Dynamical Systems Series B, Vol. 20, 2016, No 8, pp. 2291-2331.10.3934/dcdsb.2015.20.2291 Search in Google Scholar

43. Abidi, K. A Robust Discrete-Time Adaptive Control Approach for Systems with Almost Periodic Time-Varying Parameters. – International Journal of Robust and Nonlinear Control, Vol. 24, 2014, No 1, pp. 166-178.10.1002/rnc.2881 Search in Google Scholar

44. Cao, J., T. Stamov, S. Sotirov, E. Sotirova, I. Stamova. Impulsive Control via Variable Impulsive Perturbations on a Generalized Robust Stability for Cohen-Grossberg Neural Networks with Mixed Delays. – IEEE Access, Vol. 8, 2020, pp. 222890-222899.10.1109/ACCESS.2020.3044191 Search in Google Scholar

45. Freeman, R. A., P. V. Kokotovic. Robust Nonlinear Control Design. Boston, USA, Birkhauser, 1996.10.1007/978-0-8176-4759-9 Search in Google Scholar

46. Leitmann, G. Deterministic Control of Uncertain Systems via a Constructive Use of Lyapunov Stability Theory. – In: H. J. Sebastian, K. Tammer, Eds. System Modelling and Optimization. Berlin, Heidelberg, Springer, 1990, pp. 38-55.10.1007/BFb0008354 Search in Google Scholar

47. Stamov, G. T., I. M. Stamova, J. Cao. Uncertain Impulsive Functional Differential Systems of Fractional Order and Almost Periodicity. – Journal of the Franklin Institute, Vol. 355, 2018, pp. 5310-5323.10.1016/j.jfranklin.2018.05.021 Search in Google Scholar

48. Horowitz, R., H. I. Stephens, G. Leitmann. Experimental Implementation of a Deterministic Controller for a D.C. Motor with Uncertain Dynamics. – Journal of Dynamic Systems, Measurement, and Control, Vol. 111, 1989, No 2, pp. 244-252.10.1115/1.3153043 Search in Google Scholar

49. Shoureshi, R., M. J. Corless, M. D. Roesler. Control of Industrial Manipulators with Bounded Uncertainties. – Journal of Dynamic Systems, Measurement, and Control, Vol. 109, 1987, No 1, pp. 53-59.10.1115/1.3143820 Search in Google Scholar

50. Barmish, B. R., G. Leitmann. On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Conditions. – IEEE Transactions on Automatic Control, Vol. 27, 1982, No 1, pp. 153-158.10.1109/TAC.1982.1102862 Search in Google Scholar

51. Singh, S. N. Rotational Maneuver of Nonlinear Uncertain Elastic Spacecraft. – IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, 1988, No 2, pp. 114-123. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=710.1109/7.1044 Search in Google Scholar

52. Yoon, H., P. Tsiotras. Adaptive Spacecraft Attitude Tracking Control with Actuator Uncertainties. – Journal of the Astronautical Sciences, Vol. 56, 2008, No 2, pp. 251-268.10.1007/BF03256551 Search in Google Scholar

53. Wei, J., G. Dong, Z. Chen. Lyapunov-Based State of Charge Diagnosis and Health Prognosis for Lithium-ION Batteries. – Journal of Power Sources, Vol. 397, 2018, pp. 352-360.10.1016/j.jpowsour.2018.07.024 Search in Google Scholar

54. Dong, Y., S. Liang, L. Guo. Robustly Exponential Stability Analysis for Discrete-Time Stochastic Neural Networks with Interval Time-Varying Delays. – Neural Processing Letters, Vol. 46, 2017, No 1, pp. 135-158.10.1007/s11063-016-9575-1 Search in Google Scholar

55. Hou, L., G. Zong, Y. Wu. Robust Exponential Stability Analysis of Discrete-Time Switched Hopfield Neural Networks with Time Delay. – Nonlinear Analysis: Hybrid Systems, Vol. 5, 2011, No 3, pp. 525-534.10.1016/j.nahs.2010.10.014 Search in Google Scholar

56. Hu, S., J. Wang. Global Robust Stability of a Class of Discrete-Time Interval Neural Networks. – IEEE Transactions on Circuits and Systems I, Vol. 53, 2006, No 1, pp. 129-138.10.1109/TCSI.2005.854288 Search in Google Scholar

57. Udpin, S., P. Niamsup. Robust Stability of Discrete-Time LPD Neural Networks with Time Varying Delay. – Communications in Nonlinear Science and Numerical Simulation, Vol. 14, 2009, No 11, pp. 3914-3924.10.1016/j.cnsns.2008.08.018 Search in Google Scholar

eISSN:
1314-4081
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology