1. bookVolumen 20 (2020): Edición 5 (December 2020)
    Special issue on Innovations in Intelligent Systems and Applications
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Optimal Semi-Competitive Intermediation Networks

Publicado en línea: 13 Sep 2020
Volumen & Edición: Volumen 20 (2020) - Edición 5 (December 2020) - Special issue on Innovations in Intelligent Systems and Applications
Páginas: 81 - 94
Recibido: 06 Nov 2019
Aceptado: 22 Apr 2020
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Ahuja, R. K., T. L. Magnanti, J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Pearson, 1993. Search in Google Scholar

2. Andersen, M., J. Dahl, Z. Liu, L. Vandenberghe. Interior-Point Methods for Large-Scale Cone Programming. – In: S. Sra, S. Nowozin, S. J. Wright, Eds. Optimization for Machine Learning, MIT Press, 2011, pp. 1-26. Search in Google Scholar

3. Andersen, M., J. Dahl, L. Vandenberghe. CVXOPT User’s Guide. Release 1.2.4, 20 January 2020. https://cvxopt.org/userguide Search in Google Scholar

4. Bădică, A., C. Bădică, M. Ivanović, I. Buligiu. Collective Profitability and Welfare in Selling-Buying Intermediation Processes. – In: N. Nguyen, L. Iliadis, Y. Manolopoulos, B. Trawiński, Eds. Computational Collective Intelligence. ICCCI 2016. Part II, Lecture Notes in Computer Science. Vol. 9876. Cham, Springer, 2016, pp. 14-24. Search in Google Scholar

5. Bădică, A., C. Bădică, M. Ivanović, D. Logofătu. Collective Profitability of DAG-Based Selling-Buying Intermediation Processes. – In: J. Del Ser, E. Osaba, M. N. Bilbao, J. J. Sánchez-Medina, M. Vecchio, X.-S. Yang, Eds. Intelligent Distributed Computing XII. Studies in Computational Intelligence. Vol. 798. Cham, Springer, 2018, pp. 414-424.10.1007/978-3-319-99626-4_36 Search in Google Scholar

6. Bădică, C., M. Ganzha, M. Paprzycki, A. Pîrvănescu. Experimenting with a Multi-Agent E-Commerce Environment. – In: V. Malyshkin V, Ed. Parallel Computing Technologies. PaCT 2005. Lecture Notes in Computer Science. Vol. 3606. Berlin, Heidelberg, Springer, 2005, pp. 393-402. Search in Google Scholar

7. Boyd, S., L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.10.1017/CBO9780511804441 Search in Google Scholar

8. Caron, S. PYthon Module for POlyhedral MANipulations – PYPOMAN. Version 1.0. 2020. https://scaron.info/doc/pypoman/ Search in Google Scholar

9. Kaneko, M., K. Nakamura. The Nash Social Welfare Function. – Econometrica, Vol. 47, 1974, No 2, pp. 423-435.10.2307/1914191 Search in Google Scholar

10. Prussing, J. E. The Principal Minor Test for Semidefinite Matrices. – Journal of Guidance, Control, and Dynamics, Vol. 9, 1986, No 1, pp. 121-122.10.2514/3.20077 Search in Google Scholar

11. Thomas, R. R. Lectures in Geometric Combinatorics. – In: Student Mathematical Library: IAS/Park City Mathematical Subseries. Vol. 33. American Mathematical Society, 2006.10.1090/stml/033 Search in Google Scholar

12. Bădică, A., C. Bădică, M. Ivanović, D. Logofătu. Collective Profitability in Semi-Competitive Intermediation Networks. – Journal of Intelligent and Fuzzy Systems, Vol. 37, 2019, pp. 7357-7368.10.3233/JIFS-179345 Search in Google Scholar

13. Parsons, S., J. A. Rodríguez-Aguilar, M. Klein. Auctions and Bidding: A Guide for Computer Scientists. – ACM Computing Surveys, Vol. 43, 2011, No 2, pp. 10:1-10:59.10.1145/1883612.1883617 Search in Google Scholar

14. Laudon, K. C., C. G. Traver. e-Commerce 2019: Business, Technology and Society. 15th Edition. Pearson, 2019. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo