1. bookVolumen 20 (2020): Edición 5 (December 2020)
    Special issue on Innovations in Intelligent Systems and Applications
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Self-Similar Decomposition of Digital Signals

Publicado en línea: 13 Sep 2020
Volumen & Edición: Volumen 20 (2020) - Edición 5 (December 2020) - Special issue on Innovations in Intelligent Systems and Applications
Páginas: 20 - 37
Recibido: 31 Jan 2020
Aceptado: 20 May 2020
Detalles de la revista
License
Formato
Revista
eISSN
1314-4081
Primera edición
13 Mar 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Fourier, J. The Analytical Theory of Heat. New York, Cosimo, Inc., 2007, ISBN: 978-1-60206-107-1, Originally Published in 1822. Search in Google Scholar

2. Cooley, J. W., J. W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. – Mathematics of Computation, Vol. 19, No 90, pp. 297-301. DOI:10.1090/S0025-5718-1965-0178586-1, ISSN 0025-5718.10.1090/S0025-5718-1965-0178586-1 Search in Google Scholar

3. Krivosheew, V. I. Contemporary Methods for Digital Signal Processing (Digital Spectral Analysis). Educational-Methodical Material for the Advanced Training Program “Modern Mobile Digital Communication Systems, Problems of Noise Immunity and Information Protection”. Nijnii Novgorod, 2006 (in Russian). Search in Google Scholar

4. Besl, P. J., R. C. Jain. Segmentation through Variable-Order Surface Fitting. – IEEE Trans. on PAMI, Vol. IO, March 1988, No 2, pp. 167-192.10.1109/34.3881 Search in Google Scholar

5. Allen, R. L., D. W. Mills. Signal Analysis Time, Frequency, Scale, and Structure. Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc., ISBN: 0-471-23441-9. Search in Google Scholar

6. Bhanu, B. Representation and Shape Matching of 3-D Objects. – IEEE Trans. on PAMI, Vol. PAMI-6, May 1984, No 3, pp. 340-350.10.1109/TPAMI.1984.4767527 Search in Google Scholar

7. Hebert, M., J. Ponce. A New Method for Segmenting 3-D Scenes into Primitives. – In: Proc. of 6th Int. Conf. Pattern Recognition, Munich, West Germany, 19-22 October 1982, pp. 836-838. Search in Google Scholar

8. Panagiotakis, C., G. Tziritas. Signal Segmentation and Modelling Based on Equipartition Principle. – In: Proc. of 16th International Conference on Digital Signal Processing. Print ISBN: 978-1-4244-3297-4, CD-ROM ISBN: 978-1-4244-3298-1, DOI: 10.1109/ICDSP.2009.5201105.10.1109/ICDSP.2009.5201105 Search in Google Scholar

9. Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. Second Edition. Copyright © 1997-1999 by California Technical Publishing. ISBN 0-9660176-6-8. Search in Google Scholar

10. Kennedy, H. L. A New Statistical Measure of Signal Similarity. – In: Proc. of Conference: Information, Decision and Control, 2007, IDC’07. DOI: 10.1109/IDC.2007.374535.10.1109/IDC.2007.374535 Search in Google Scholar

11. Han, T. S. Nonnegative Entropy Measures of Multivariate Symmetric Correlations. – Information and Control, Vol. 36, 1978, pp. 133-156.10.1016/S0019-9958(78)90275-9 Search in Google Scholar

12. Olbrich, E., N. Bertschinger, N. Ay, J. Jost. How Should Complexity Scale with System Size? – The European Physical Journal B – Condensed Matter and Complex Systems, 2008, DOI: 10.1140/epjb/e2008-00134-9.10.1140/epjb/e2008-00134-9 Search in Google Scholar

13. Abdallah, S. A., M. D. Plumbley. A Measure of Statistical Complexity Based on Predictive Information. ArXiv e-prints. arXiv:1012.1890v1, 2010. Search in Google Scholar

14. Low, R. K. Y., J. Alcock, R. Faff, T. Brailsford. Canonical Vine Copulas in the Context of Modern Portfolio Management: Are They Worth It? – Journal of Banking & Finance, Vol. 37, 2013, No 8. DOI:10.1016/j.jbankfin.2013.02.036.10.1016/j.jbankfin.2013.02.036 Search in Google Scholar

15. Kreyszig, E. Introductory Functional Analysis with Applications. John Wiley and Sons, 1978. ISBN: 0-471-50731-8. Search in Google Scholar

16. Chew, L. P., K. Kedem. Getting Around a Lower Bound for the Minimum Hausdorff Distance. Computational Geometry, Theory and Applications, Vol. 10, 1988, No 3, pp. 197-202.10.1016/S0925-7721(97)00032-1 Search in Google Scholar

17. Chew, L. P., K. Kedem, S. Schirra. On Characteristic Points and Approximate Decision Algorithms for the Minimum Hausdorff Distance. Technical Report MPI-I-94-150, Max-Planck-InstitutfürInformatik, Saarbrücken, 1994, DE. 10 p. Search in Google Scholar

18. Dubuisson, M. P., A. K. Jain. Modified Hausdorff distance for object matching. – In: Proc. of IAPR Int. Conf. on Pattern Recognition (ICPR’94, Jerusalem, IS), Vol. A, pp. 566-568. Search in Google Scholar

19. Rabiner, L., R. Schafer. Theory and Applications of Digital Speech Processing. 1st Edition. ISBN-13: 978-0136034285, ISBN-10: 0136034284. Search in Google Scholar

20. Pan, V. Y. The Trade-off between the Additive Complexity and the Asynchronicity of Linear and Bilinear Algorithms. – Information Processing Letters, Vol. 22, 1986, No 1, pp. 11-14. DOI:10.1016/0020-0190(86)90035-9.10.1016/0020-0190(86)90035-9 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo