Cite

1. Gisin, N., et al. Quantum Cryptography. – Reviews of Modern Physics,Vol. 74, 2002, No 1, p. 145.10.1103/RevModPhys.74.145Search in Google Scholar

2. Chou, Y.-H., et al. Quantum Entanglement and Non-Locality Based Secure Computation for Future Communication. – IET Information Security, Vol. 5, 2011, No 1, pp. 69-79.10.1049/iet-ifs.2009.0143Search in Google Scholar

3. Hanschke, L., et al. Quantum Dot Single-Photon Sources with Ultra-Low Multi-Photon Probability. – NPJ Quantum Information, Vol. 4, 2018, No 1, p. 43.10.1038/s41534-018-0092-0Search in Google Scholar

4. Sibson, P., et al. Chip-Based Quantum Key Distribution. – Nature Communications, Vol. 8, 2017, p. 13984.10.1038/ncomms13984530976328181489Search in Google Scholar

5. Liao, S.-K., et al. Satellite-Relayed Intercontinental Quantum Network. – Physical Review Letters, Vol. 120, 2018, No 3, p. 030501.10.1103/PhysRevLett.120.03050129400544Search in Google Scholar

6. Kohnle, A., A. Rizzoli. Interactive Simulations for Quantum Key Distribution. – European Journal of Physics, Vol. 38, 2017, No 3, p. 035403.10.1088/1361-6404/aa62c8Search in Google Scholar

7. Niemiec, M., Ł. Romański, M. Święty. Quantum Cryptography Protocol Simulator. – In: International Conference on Multimedia Communications, Services and Security, 2011, Springer.10.1007/978-3-642-21512-4_34Search in Google Scholar

8. Atashpendar, A., P. Ryan. Simulation and Analysis of QKD (BB84). – Interdisciplinary Center for Security, University of Luxembourg, 2014-2019. https://www.qkdsimulator.com/Search in Google Scholar

9. Scarani, V., R. Renner. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. – Physical Review Letters, Vol. 100, 2008, No 20, p. 200501.10.1103/PhysRevLett.100.20050118518517Search in Google Scholar

10. Abdelgawad, M. Github EnQuad Repository. 2019. https://github.com/Mo-Abdelgawad/EnQuad-a-QKD-SimulatorSearch in Google Scholar

11. Diffie, W., M. Hellman. New Directions in Cryptography. – IEEE Transactions on Information Theory, Vol. 22, 1976, No 6, pp. 644-654.10.1109/TIT.1976.1055638Search in Google Scholar

12. Scarani, V., et al. Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. – Physical Review Letters, Vol. 92, 2004, No 5, 057901.10.1103/PhysRevLett.92.05790114995344Search in Google Scholar

13. Lo, H.-K., X. Ma, K. Chen. Decoy State Quantum Key Distribution. – Physical Review Letters, Vol. 94, 2005, No 23, 230504.10.1103/PhysRevLett.94.23050416090452Search in Google Scholar

14. Jeong, Y.-C., Y.-S. Kim, Y.-H. Kim. Effects of Depolarizing Quantum Channels on BB84 and SARG04 Quantum Cryptography Protocols. – Laser Physics, Vol. 21, 2011, No 8, pp. 1438-1442.10.1134/S1054660X11150126Search in Google Scholar

15. Niederberger, A., V. Scarani, N. Gisin. Photon-Number-Splitting Versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 Protocol for Quantum Cryptography. – Physical Review A, Vol. 71, 2005, No 4, 042316.10.1103/PhysRevA.71.042316Search in Google Scholar

16. Lizama-Pérez, L., J. López, E. De Carlos López. Quantum Key Distribution in the Presence of the Intercept-Resend with Faked States Attack. – Entropy, Vol. 19, 2017, No 1, p. 4.10.3390/e19010004Search in Google Scholar

17. Elkouss, D., et al. Efficient Reconciliation Protocol for Discrete-Variable Quantum Key Distribution. – In: 2009 IEEE International Symposium on Information Theory, 2009, IEEE.10.1109/ISIT.2009.5205475Search in Google Scholar

18. Benletaief, N., H. Rezig, A. Bouallegue. Toward Efficient Quantum Key Distribution Reconciliation. – Journal of Quantum Information Science, Vol. 4, 2014, No 2, p. 117.10.4236/jqis.2014.42013Search in Google Scholar

19. Kern, O., J. M. Renes. Improved One-Way Rates for BB84 and 6-State Protocols. – arXiv preprint arXiv:0712.1494, 2007.10.26421/QIC8.8-9-6Search in Google Scholar

20. Mehic, M., M. Niemiec, M. Voznak. Calculation of the Key Length for Quantum Key Distribution. – Elektronika i Elektrotechnika, Vol. 21, 2015, No 6, pp. 81-85.10.5755/j01.eee.21.6.13768Search in Google Scholar

21. Gottesman, D., H.-K. Lo. Proof of Security of Quantum Key Distribution with Two-Way Classical Communications. – IEEE Transactions on Information Theory, Vol. 49, 2003, No 2, pp. 457-475.10.1109/TIT.2002.807289Search in Google Scholar

22. Smith, G., J. A. Smolin. Additive Extensions of a Quantum Channel. – In: Information Theory Workshop, 2008 (ITW’08), IEEE, 2008.10.1109/ITW.2008.4578688Search in Google Scholar

23. Ekert, A. K. Quantum Cryptography Based on Bell’s Theorem. – Physical Review Letters, Vol. 67, 1991, No 6, p. 661.10.1103/PhysRevLett.67.66110044956Search in Google Scholar

24. Hwang, T., K.-C. Lee. EPR Quantum Key Distribution Protocols with Potential 100% Qubit Efficiency. – IET Information Security, Vol. 1, 2007, No 1, pp. 43-45.10.1049/iet-ifs:20060124Search in Google Scholar

eISSN:
1314-4081
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology